BrownForsytheTest[data] tests whether the variance of data is 1. BrownForsytheTest[{data_1, data_2}] tests whether the variances of data_1 and data_2 are ...
GeometricDistribution[p] represents a geometric distribution with probability parameter p.
HypergeometricDistribution[n, n_succ, n_tot] represents a hypergeometric distribution.
ParallelTable[expr, {i_max}] generates in parallel a list of i_max copies of expr.ParallelTable[expr, {i, i_max}] generates in parallel a list of the values of expr when i ...
StreamDensityPlot[{{v_x, v_y}, s}, {x, x_min, x_max}, {y, y_min, y_max}] generates a stream plot of the vector field {v_x, v_y} as a function of x and y, superimposed on a ...
For minimization problems for which the objective function is a sum of squares, it is often advantageous to use the special structure of the problem. Time and effort can be ...
The Mathematica compiler can run computations in parallel. It does this by threading a compiled function over lists of data in parallel. A first step is to create a compiled ...
FindInstance[expr, vars] finds an instance of vars that makes the statement expr be True. FindInstance[expr, vars, dom] finds an instance over the domain dom. Common choices ...
GeneralizedLinearModelFit[{y_1, y_2, ...}, {f_1, f_2, ...}, x] constructs a generalized linear model of the form g -1 (\[Beta]_0 + \[Beta]_1 f_1 + \[Beta]_2 f_2 + ...) that ...
JohnsonDistribution["SB", \[Gamma], \[Delta], \[Mu], \[Sigma]] represents a bounded Johnson distribution with shape parameters \[Gamma], \[Delta], location parameter \[Mu], ...