Computational geometry is the study of efficient algorithms for solving geometric problems. The nearest neighbor problem involves identifying one point, out of a set of ...
When numerically solving Hamiltonian dynamical systems it is advantageous if the numerical method yields a symplectic map. If the Hamiltonian can be written in separable ...
ExtremeValueDistribution[\[Alpha], \[Beta]] represents an extreme value distribution with location parameter \[Alpha] and scale parameter \[Beta].
FrechetDistribution[\[Alpha], \[Beta]] represents the Frechet distribution with shape parameter \[Alpha] and scale parameter \[Beta].FrechetDistribution[\[Alpha], \[Beta], ...
GumbelDistribution[\[Alpha], \[Beta]] represents a Gumbel distribution with location parameter \[Alpha] and scale parameter \[Beta].
ListAnimate[{expr_1, expr_2, ...}] generates an animation whose frames are the successive expr_i. ListAnimate[list, fps] displays fps frames per second.
Even more so than for other special functions, you need to be very careful about the arguments you give to elliptic integrals and elliptic functions. There are several ...
Product
(Built-in Mathematica Symbol) Product[f, {i, i_max}] evaluates the product \[Product]i = 1 i_max f. Product[f, {i, i_min, i_max}] starts with i = i_min. Product[f, {i, i_min, i_max, di}] uses steps di. ...
Sum
(Built-in Mathematica Symbol) Sum[f, {i, i_max}] evaluates the sum \[Sum]i = 1 i_max f. Sum[f, {i, i_min, i_max}] starts with i = i_min. Sum[f, {i, i_min, i_max, di}] uses steps d i. Sum[f, {i, {i_1, i_2, ...
The basic problem of the calculus of variations is to determine the function u(x) that extremizes a functional F=∫_SubscriptBox[x^StyleBox[min, FontSlant -> Italic], ...