551 - 560 of 621 for SolveSearch Results
View search results from all Wolfram sites (22864 matches)
Computational Geometry Package   (Computational Geometry Package Tutorial)
Computational geometry is the study of efficient algorithms for solving geometric problems. The nearest neighbor problem involves identifying one point, out of a set of ...
When numerically solving Hamiltonian dynamical systems it is advantageous if the numerical method yields a symplectic map. If the Hamiltonian can be written in separable ...
ExtremeValueDistribution   (Built-in Mathematica Symbol)
ExtremeValueDistribution[\[Alpha], \[Beta]] represents an extreme value distribution with location parameter \[Alpha] and scale parameter \[Beta].
FrechetDistribution   (Built-in Mathematica Symbol)
FrechetDistribution[\[Alpha], \[Beta]] represents the Frechet distribution with shape parameter \[Alpha] and scale parameter \[Beta].FrechetDistribution[\[Alpha], \[Beta], ...
GumbelDistribution   (Built-in Mathematica Symbol)
GumbelDistribution[\[Alpha], \[Beta]] represents a Gumbel distribution with location parameter \[Alpha] and scale parameter \[Beta].
ListAnimate   (Built-in Mathematica Symbol)
ListAnimate[{expr_1, expr_2, ...}] generates an animation whose frames are the successive expr_i. ListAnimate[list, fps] displays fps frames per second.
Elliptic Integrals and Elliptic ...   (Mathematica Tutorial)
Even more so than for other special functions, you need to be very careful about the arguments you give to elliptic integrals and elliptic functions. There are several ...
Product   (Built-in Mathematica Symbol)
Product[f, {i, i_max}] evaluates the product \[Product]i = 1 i_max f. Product[f, {i, i_min, i_max}] starts with i = i_min. Product[f, {i, i_min, i_max, di}] uses steps di. ...
Sum   (Built-in Mathematica Symbol)
Sum[f, {i, i_max}] evaluates the sum \[Sum]i = 1 i_max f. Sum[f, {i, i_min, i_max}] starts with i = i_min. Sum[f, {i, i_min, i_max, di}] uses steps d i. Sum[f, {i, {i_1, i_2, ...
Variational Methods   (Variational Methods Package Tutorial)
The basic problem of the calculus of variations is to determine the function u(x) that extremizes a functional F=∫_SubscriptBox[x^StyleBox[min, FontSlant -> Italic], ...
1 ... 53|54|55|56|57|58|59 ... 63 Previous Next

...