191 - 200 of 224 for TicksSearch Results
View search results from all Wolfram sites (2403 matches)
ParametricPlot   (Built-in Mathematica Symbol)
ParametricPlot[{f_x, f_y}, {u, u_min, u_max}] generates a parametric plot of a curve with x and y coordinates f_x and f_y as a function of u. ParametricPlot[{{f_x, f_y}, ...
Extrapolation Method for NDSolve   (Mathematica Tutorial)
Extrapolation methods are a class of arbitrary-order methods with automatic order and step-size control. The error estimate comes from computing a solution over an interval ...
Ticks::ticks   (Mathematica Message)
Ticks::ticks
StreamDensityPlot   (Built-in Mathematica Symbol)
StreamDensityPlot[{{v_x, v_y}, s}, {x, x_min, x_max}, {y, y_min, y_max}] generates a stream plot of the vector field {v_x, v_y} as a function of x and y, superimposed on a ...
Introduction to Manipulate   (Mathematica Tutorial)
The single command Manipulate lets you create an astonishing range of interactive applications with just a few lines of input. Manipulate is designed to be used by anyone who ...
NIntegrate   (Built-in Mathematica Symbol)
NIntegrate[f, {x, x_min, x_max}] gives a numerical approximation to the integral \[Integral]_x_min^x_max\ f\ d \ x. NIntegrate[f, {x, x_min, x_max}, {y, y_min, y_max}, ...] ...
Add Error Bars to Charts and Plots   (Mathematica How To)
Plots of data based on measurements often have vertical lines or intervals centered at the points to indicate the associated error estimates. Mathematica lets you add such ...
BetaDistribution   (Built-in Mathematica Symbol)
BetaDistribution[\[Alpha], \[Beta]] represents a continuous beta distribution with shape parameters \[Alpha] and \[Beta].
EstimatedDistribution   (Built-in Mathematica Symbol)
EstimatedDistribution[data, dist] estimates the parametric distribution dist from data.EstimatedDistribution[data, dist, {{p, p_0}, {q, q_0}, ...}] estimates the parameters ...
SmoothDensityHistogram   (Built-in Mathematica Symbol)
SmoothDensityHistogram[{{x_1, y_1}, {x_2, y_2}, ...}] plots a smooth kernel histogram of the values {x_i, y_i}.SmoothDensityHistogram[{{x_1, y_1}, {x_2, y_2}, ...}, espec] ...
1 ... 17|18|19|20|21|22|23 Previous Next

...