191 - 200 of 414 for TransposeSearch Results
View search results from all Wolfram sites (6005 matches)
LindleyDistribution   (Built-in Mathematica Symbol)
LindleyDistribution[\[Delta]] represents a Lindley distribution with shape parameter \[Delta].
Norm   (Built-in Mathematica Symbol)
Norm[expr] gives the norm of a number, vector or matrix. Norm[expr, p] gives the p-norm.
SkellamDistribution   (Built-in Mathematica Symbol)
SkellamDistribution[\[Mu]_1, \[Mu]_2] represents a Skellam distribution with shape parameters \[Mu]_1 and \[Mu]_2.
StepMonitor   (Built-in Mathematica Symbol)
StepMonitor is an option for iterative numerical computation functions that gives an expression to evaluate whenever a step is taken by the numerical method used.
Rigid Body Solvers   (Mathematica Tutorial)
The equations of motion for a free rigid body whose center of mass is at the origin are given by the following Euler equations (see [MR99]). Two quadratic first integrals of ...
InverseGammaDistribution   (Built-in Mathematica Symbol)
InverseGammaDistribution[\[Alpha], \[Beta]] represents an inverse gamma distribution with shape parameter \[Alpha] and scale parameter ...
InverseGaussianDistribution   (Built-in Mathematica Symbol)
InverseGaussianDistribution[\[Mu], \[Lambda]] represents an inverse Gaussian distribution with mean \[Mu] and scale parameter \[Lambda].InverseGaussianDistribution[\[Mu], ...
NIntegrate Integration Strategies   (Mathematica Tutorial)
An integration strategy is an algorithm that attempts to compute integral estimates that satisfy user-specified precision or accuracy goals. An integration strategy normally ...
GeneralizedLinearModelFit   (Built-in Mathematica Symbol)
GeneralizedLinearModelFit[{y_1, y_2, ...}, {f_1, f_2, ...}, x] constructs a generalized linear model of the form g -1 (\[Beta]_0 + \[Beta]_1 f_1 + \[Beta]_2 f_2 + ...) that ...
NonlinearModelFit   (Built-in Mathematica Symbol)
NonlinearModelFit[{y_1, y_2, ...}, form, {\[Beta]_1, ...}, x] constructs a nonlinear model with structure form that fits the y_i for successive x values 1, 2, ... using the ...
1 ... 17|18|19|20|21|22|23 ... 42 Previous Next

...