321 - 330 of 414 for TransposeSearch Results
View search results from all Wolfram sites (6005 matches)
KolmogorovSmirnovTest   (Built-in Mathematica Symbol)
KolmogorovSmirnovTest[data] tests whether data is normally distributed using the Kolmogorov\[Dash]Smirnov test.KolmogorovSmirnovTest[data, dist] tests whether data is ...
PairedTTest   (Built-in Mathematica Symbol)
PairedTTest[data] tests whether the mean of data is zero. PairedTTest[{data_1, data_2}] tests whether the mean of data_1\[Dash] data_2 is zero.PairedTTest[dspec, \[Mu]_0] ...
PairedZTest   (Built-in Mathematica Symbol)
PairedZTest[data] tests whether the mean of the data is zero. PairedZTest[{data_1, data_2}] tests whether the means of data_1 and data_2 are equal.PairedZTest[dspec, ...
RayleighDistribution   (Built-in Mathematica Symbol)
RayleighDistribution[\[Sigma]] represents the Rayleigh distribution with scale parameter \[Sigma].
ZipfDistribution   (Built-in Mathematica Symbol)
ZipfDistribution[\[Rho]] represents a zeta distribution with parameter \[Rho].ZipfDistribution[n, \[Rho]] represents a Zipf distribution with range n.
ZTest   (Built-in Mathematica Symbol)
ZTest[data] tests whether the mean of the data is zero. ZTest[{data_1, data_2}] tests whether the means of data_1 and data_2 are equal.ZTest[dspec, \[Sigma]] tests for zero ...
OpenCLFunctionLoad   (OpenCLLink Symbol)
OpenCLFunctionLoad[prog, fun, argtypes, blockdims] loads fun from source code prog, returning an OpenCLFunction object.OpenCLFunctionLoad[{progfile}, fun, argtypes, ...
Alphabetical Listing   (Mathematica Guide)
Mathematica has over 3000 built-in functions and other objects, all based on a single unified framework, and all carefully designed to work together, both in simple ...
DensityHistogram   (Built-in Mathematica Symbol)
DensityHistogram[{{x_1, y_1}, {x_2, y_2}, ...}] plots a density histogram of the values {x_i, y_i}.DensityHistogram[{{x_1, y_1}, {x_2, y_2}, ...}, bspec] plots a density ...
FindDistributionParameters   (Built-in Mathematica Symbol)
FindDistributionParameters[data, dist] finds the parameter estimates for the distribution dist from data.FindDistributionParameters[data, dist, {{p, p_0}, {q, q_0}, ...}] ...
1 ... 30|31|32|33|34|35|36 ... 42 Previous Next

...