InverseJacobiDN[v, m] gives the inverse Jacobi elliptic function dn -1 (v \[VerticalSeparator] m).
InverseJacobiDS[v, m] gives the inverse Jacobi elliptic function ds -1 (v \[VerticalSeparator] m).
InverseJacobiND[v, m] gives the inverse Jacobi elliptic function nd -1 (v \[VerticalSeparator] m).
InverseJacobiSC[v, m] gives the inverse Jacobi elliptic function sc -1 (v \[VerticalSeparator] m).
InverseJacobiSD[v, m] gives the inverse Jacobi elliptic function sd -1 (v \[VerticalSeparator] m).
InverseJacobiSN[v, m] gives the inverse Jacobi elliptic function sn -1 (v \[VerticalSeparator] m).
NArgMin
(Built-in Mathematica Symbol) NArgMin[f, x] gives a position x_min at which f is numerically minimized.NArgMin[f, {x, y, ...}] gives a position {x_min, y_min, ...} at which f is numerically ...
In many practical situations it is convenient to consider limits in which a fixed amount of something is concentrated into an infinitesimal region. Ordinary mathematical ...
Combining a new level of programmatic support for symbolic color with carefully chosen aesthetic color parametrizations, Mathematica allows a uniquely flexible and compelling ...
Mathematica allows you detailed control over the way that graphics objects are rendered. The combination of sequentially-acting graphics directives, together with ...