MultivariatePoissonDistribution[\[Mu]_0, {\[Mu]_1, \[Mu]_2, \ ...}] represents a multivariate Poisson distribution with mean vector {\[Mu]_0 + \[Mu]_1, \[Mu]_0 + \[Mu]_2, ...
KernelMixtureDistribution[{x_1, x_2, ...}] represents a kernel mixture distribution based on the data values x_i.KernelMixtureDistribution[{{x_1, y_1, ...}, {x_2, y_2, ...}, ...
ListStreamDensityPlot[array] generates a stream density plot from a 2D array of vector and scalar field values {{vx_ij, vy_ij}, s_ij}. ListStreamDensityPlot[{{{x_1, y_1}, ...
ListVectorDensityPlot[array] generates a vector plot from a 2D array of vector and scalar field values {{vx_ij, vy_ij}, s_ij}. ListVectorDensityPlot[{{{x_1, y_1}, {{vx_1, ...
MatrixExp[m] gives the matrix exponential of m. MatrixExp[m, v] gives the matrix exponential of m applied to the vector v.
LogNormalDistribution[\[Mu], \[Sigma]] represents a lognormal distribution derived from a normal distribution with mean \[Mu] and standard deviation \[Sigma].
VectorPlot3D[{v_x, v_y, v_z}, {x, x_min, x_max}, {y, y_min, y_max}, {z, z_min, z_max}] generates a 3D vector plot of the vector field {v_x, v_y, v_z} as a function of x, y, ...
SymbolicC provides automated formatting of the generated C output. This section reviews some of the ways that you can work with formatting to create your own styles of ...
ListContourPlot[array] generates a contour plot from an array of height values. ListContourPlot[{{x_1, y_1, f_1}, {x_2, y_2, f_2}, ...}] generates a contour plot from values ...
The Mathematica compiler provides an important way both to speed up and also to work with Mathematica computations. It does this by taking assumptions about the computations ...