MultivariateHypergeometricDistribution[n, {m_1, m_2, ..., m_k}] represents a multivariate hypergeometric distribution with n draws without replacement from a collection ...
NakagamiDistribution[\[Mu], \[Omega]] represents a Nakagami distribution with shape parameter \[Mu] and spread parameter \[Omega].
NicholsPlot[g] gives the Nichols plot of a rational function g in one complex variable.NicholsPlot[sys] gives the Nichols plot of a TransferFunctionModel or StateSpaceModel ...
NMaximize[f, x] maximizes f numerically with respect to x.NMaximize[f, {x, y, ...}] maximizes f numerically with respect to x, y, .... NMaximize[{f, cons}, {x, y, ...}] ...
NMinimize[f, x] minimizes f numerically with respect to x.NMinimize[f, {x, y, ...}] minimizes f numerically with respect to x, y, .... NMinimize[{f, cons}, {x, y, ...}] ...
NProduct[f, {i, i_min, i_max}] gives a numerical approximation to the product \[Product]i = i_min i_max f.NProduct[f, {i, i_min, i_max, di}] uses a step di in the product.
NSum
(Built-in Mathematica Symbol) NSum[f, {i, i_min, i_max}] gives a numerical approximation to the sum \[Sum]i = i_min i_max f.NSum[f, {i, i_min, i_max, di}] uses a step di in the sum.
NumberForm[expr, n] prints with approximate real numbers in expr given to n-digit precision.
NyquistPlot[g] gives the Nyquist plot of a rational function g in one complex variable.NyquistPlot[sys] gives the Nyquist plot of a TransferFunctionModel or StateSpaceModel ...
Orthogonalize[{v_1, v_2, ...}] gives an orthonormal basis found by orthogonalizing the vectors v_i.Orthogonalize[{e_1, e_2, ...}, f] gives a basis for the e_i orthonormal ...