Palettes are like extensions of your keyboard. They can be used to perform many actions in Mathematica, including entering typesetting characters, styling notebooks, and ...
One significant advantage Mathematica provides is that it can symbolically compute derivatives. This means that when you specify Method->"Newton" and the function is ...
KernelMixtureDistribution[{x_1, x_2, ...}] represents a kernel mixture distribution based on the data values x_i.KernelMixtureDistribution[{{x_1, y_1, ...}, {x_2, y_2, ...}, ...
BenfordDistribution[b] represents a Benford distribution with base parameter b.
WalleniusHypergeometricDistribution[n, n_succ, n_tot, w] represents a Wallenius noncentral hypergeometric distribution.
BetaDistribution[\[Alpha], \[Beta]] represents a continuous beta distribution with shape parameters \[Alpha] and \[Beta].
InterpolatingPolynomial[{f_1, f_2, ...}, x] constructs an interpolating polynomial in x which reproduces the function values f_i at successive integer values 1, 2, ... of x. ...
SkewNormalDistribution[\[Mu], \[Sigma], \[Alpha]] represents a skew-normal distribution with shape parameter \[Alpha], location parameter \[Mu], and scale parameter \[Sigma].
BenktanderWeibullDistribution[a, b] represents a Benktander distribution of type II with parameters a and b.
LogitModelFit[{y_1, y_2, ...}, {f_1, f_2, ...}, x] constructs a binomial logistic regression model of the form 1/(1 + E -(\[Beta]_0 + \[Beta]_1 f_1 + \[Beta]_2 f_2 + \ ...)) ...