Mathematica's unified architecture allows every aspect of Mathematica's interface to be controlled and specified programmatically using the symbolic constructs and functions ...
FourierCosCoefficient[expr, t, n] gives the n\[Null]^th coefficient in the Fourier cosine series expansion of expr.FourierCosCoefficient[expr, {t_1, t_2, ...}, {n_1, n_2, ...
FourierSinCoefficient[expr, t, n] gives the n\[Null]^th coefficient in the Fourier sine series expansion of expr.FourierSinCoefficient[expr, {t_1, t_2, ...}, {n_1, n_2, ...}] ...
HornerForm[poly] puts the polynomial poly in Horner form.HornerForm[poly, vars] puts poly in Horner form with respect to the variable or variable list ...
FourierCoefficient[expr, t, n] gives the n\[Null]^th coefficient in the Fourier series expansion of expr.FourierCoefficient[expr, {t_1, t_2, ...}, {n_1, n_2, ...}] gives a ...
Mathematica can represent bit vectors of arbitrary length as integers, and uses highly optimized algorithms—including several original to Wolfram Research—to perform bitwise ...
FourierTrigSeries[expr, t, n] gives the n\[Null]^th-order Fourier trigonometric series expansion of expr in t.FourierTrigSeries[expr, {t_1, t_2, ...}, {n_1, n_2, ...}] gives ...
TransferFunctionFactor[tf] factors the polynomial terms in the numerators and denominators of the TransferFunctionModel object tf.
Mathematica supports a variety of coordinate systems, organized for ease and efficiency of both direct and programmatic use. It supports convenient robust automatic range and ...
FourierCosSeries[expr, t, n] gives the n\[Null]^th-order Fourier cosine series expansion of expr in t.FourierCosSeries[expr, {t_1, t_2, ...}, {n_1, n_2, ...}] gives the ...