DirichletDistribution[{\[Alpha]_1, ..., \[Alpha] k +1}] represents a Dirichlet distribution of dimension k with shape parameters \[Alpha]_i.
DiscreteUniformDistribution[{i_min, i_max}] represents a discrete uniform distribution over the integers from i_min to i_max.DiscreteUniformDistribution[{{i_min, i_max}, ...
ExampleData["type"] gives a list of names of examples of the specified type.ExampleData[{" type", " name"}] gives the default form of the named example of the specified ...
GompertzMakehamDistribution[\[Lambda], \[Xi]] represents a Gompertz distribution with scale parameter \[Lambda] and frailty parameter ...
LogitModelFit[{y_1, y_2, ...}, {f_1, f_2, ...}, x] constructs a binomial logistic regression model of the form 1/(1 + E -(\[Beta]_0 + \[Beta]_1 f_1 + \[Beta]_2 f_2 + \ ...)) ...
MaxStableDistribution[\[Mu], \[Sigma], \[Xi]] represents a generalized maximum extreme value distribution with location parameter \[Mu], scale parameter \[Sigma], and shape ...
MinStableDistribution[\[Mu], \[Sigma], \[Xi]] represents a generalized minimum extreme value distribution with location parameter \[Mu], scale parameter \[Sigma], and shape ...
MultivariateTDistribution[\[CapitalSigma], \[Nu]] represents the multivariate Student t distribution with scale matrix \[CapitalSigma] and degrees of freedom parameter ...
PERTDistribution[{min, max}, c] represents a PERT distribution with range min to max and maximum at c.PERTDistribution[{min, max}, c, \[Lambda]] represents a modified PERT ...
ProbitModelFit[{y_1, y_2, ...}, {f_1, f_2, ...}, x] constructs a binomial probit regression model of the form 1/2 (1 + erf((\[Beta]_0 + \[Beta]_1 f_1 + \[Beta]_2 f_2 + \ ...