381 - 390 of 594 for mouse interactiveSearch Results
View search results from all Wolfram sites (152338 matches)
Editable   (Built-in Mathematica Symbol)
Editable is an option for displayed objects, cells, and notebooks that specifies whether their contents can be edited interactively using the front end.
ListLinePlot   (Built-in Mathematica Symbol)
ListLinePlot[{y_1, y_2, ...}] plots a line through a list of values, assumed to correspond to x coordinates 1, 2, .... ListLinePlot[{{x_1, y_1}, {x_2, y_2}, ...}] plots a ...
Plot   (Built-in Mathematica Symbol)
Plot[f, {x, x_min, x_max}] generates a plot of f as a function of x from x_min to x_max. Plot[{f_1, f_2, ...}, {x, x_min, x_max}] plots several functions f_i.
RevolutionPlot3D   (Built-in Mathematica Symbol)
RevolutionPlot3D[f_z, {t, t_min, t_max}] generates a plot of the surface of revolution with height f_z at radius t.RevolutionPlot3D[f_z, {t, t_min, t_max}, {\[Theta], ...
SphericalPlot3D   (Built-in Mathematica Symbol)
SphericalPlot3D[r, \[Theta], \[Phi]] generates a 3D plot with a spherical radius r as a function of spherical coordinates \[Theta] and \[Phi].SphericalPlot3D[r, {\[Theta], ...
LiftingWaveletTransform   (Built-in Mathematica Symbol)
LiftingWaveletTransform[data] gives the lifting wavelet transform (LWT) of an array of data.LiftingWaveletTransform[data, wave] gives the lifting wavelet transform using the ...
GraphPath   (Graph Utilities Package Symbol)
GraphPath[g, start, end] finds a shortest path between vertices start and end in graph g.
BezierCurve   (Built-in Mathematica Symbol)
BezierCurve[{pt_1, pt_2, ...}] is a graphics primitive that represents a Bézier curve with control points pt_i.
Inset   (Built-in Mathematica Symbol)
Inset[obj] represents an object obj inset in a graphic. Inset[obj, pos] specifies that the inset should be placed at position pos in the graphic. Inset[obj, pos, opos] aligns ...
LogLinearPlot   (Built-in Mathematica Symbol)
LogLinearPlot[f, {x, x_min, x_max}] generates a log-linear plot of f as a function of x from x_min to x_max. LogLinearPlot[{f_1, f_2, ...}, {x, x_min, x_max}] generates ...
1 ... 36|37|38|39|40|41|42 ... 60 Previous Next

...