791 - 800 of 4264 for not equalSearch Results
View search results from all Wolfram sites (323137 matches)
RandomChoice   (Built-in Mathematica Symbol)
RandomChoice[{e_1, e_2, ...}] gives a pseudorandom choice of one of the e_i. RandomChoice[list, n] gives a list of n pseudorandom choices. RandomChoice[list, {n_1, n_2, ...}] ...
WignerD   (Built-in Mathematica Symbol)
WignerD[{j, m_1, m_2}, \[Psi], \[Theta], \[Phi]] gives the Wigner D-function D_m_1^m_2, j(\[Psi], \[Theta], \[Phi]).WignerD[{j, m_1, m_2}, \[Theta], \[Phi]] gives the Wigner ...
DateListLogPlot   (Built-in Mathematica Symbol)
DateListLogPlot[{{date_1, v_1}, {date_2, v_2}, ...}] makes a log plot with values v_i at a sequence of dates.DateListLogPlot[{v_1, v_2, ...}, datespec] makes a log plot with ...
SurvivalDistribution   (Built-in Mathematica Symbol)
SurvivalDistribution[{e_1, e_2, ...}] represents a survival distribution with event times e_i.SurvivalDistribution[{w_1, w_2, ...} -> {e_1, e_2, ...}] represents a survival ...
EventLocator Method for NDSolve   (Mathematica Tutorial)
It is often useful to be able to detect and precisely locate a change in a differential system. For example, with the detection of a singularity or state change, the ...
Resolve   (Built-in Mathematica Symbol)
Resolve[expr] attempts to resolve expr into a form that eliminates ForAll and Exists quantifiers. Resolve[expr, dom] works over the domain dom. Common choices of dom are ...
TuranGraph   (Built-in Mathematica Symbol)
TuranGraph[n, k] gives the k-partite Turán graph with n vertices T n, k.
SetterBar   (Built-in Mathematica Symbol)
SetterBar[x, {val_1, val_2, ...}] represents a setter bar with setting x and with setter buttons for values val_i.SetterBar[Dynamic[x], {val_1, val_2, ...}] takes the setting ...
TogglerBar   (Built-in Mathematica Symbol)
TogglerBar[x, {val_1, val_2, ...}] represents a toggler bar with setting x and with toggler buttons for values val_i to include in the list x.TogglerBar[Dynamic[x], {val_1, ...
Variational Methods   (Variational Methods Package Tutorial)
The basic problem of the calculus of variations is to determine the function u(x) that extremizes a functional F=∫_SubscriptBox[x^StyleBox[min, FontSlant -> Italic], ...
1 ... 77|78|79|80|81|82|83 ... 427 Previous Next

...