InverseJacobiCN[v, m] gives the inverse Jacobi elliptic function cn -1 (v \[VerticalSeparator] m).
InverseJacobiCS[v, m] gives the inverse Jacobi elliptic function cs -1 (v \[VerticalSeparator] m).
InverseJacobiDN[v, m] gives the inverse Jacobi elliptic function dn -1 (v \[VerticalSeparator] m).
InverseJacobiDS[v, m] gives the inverse Jacobi elliptic function ds -1 (v \[VerticalSeparator] m).
InverseJacobiND[v, m] gives the inverse Jacobi elliptic function nd -1 (v \[VerticalSeparator] m).
InverseJacobiSC[v, m] gives the inverse Jacobi elliptic function sc -1 (v \[VerticalSeparator] m).
InverseJacobiSD[v, m] gives the inverse Jacobi elliptic function sd -1 (v \[VerticalSeparator] m).
InverseJacobiSN[v, m] gives the inverse Jacobi elliptic function sn -1 (v \[VerticalSeparator] m).
When you define a complicated function, you will often want to let some of the arguments of the function be "optional". If you do not give those arguments explicitly, you ...
[1] Mehrotra, S. "On the Implementation of a Primal-Dual Interior Point Method." SIAM Journal on Optimization 2 (1992): 575–601. [2] Nelder, J.A. and R. Mead. "A Simplex ...