501 - 510 of 1091 for partial differential equationsSearch Results
View search results from all Wolfram sites (31950 matches)
InverseJacobiCN   (Built-in Mathematica Symbol)
InverseJacobiCN[v, m] gives the inverse Jacobi elliptic function cn -1 (v \[VerticalSeparator] m).
InverseJacobiCS   (Built-in Mathematica Symbol)
InverseJacobiCS[v, m] gives the inverse Jacobi elliptic function cs -1 (v \[VerticalSeparator] m).
InverseJacobiDN   (Built-in Mathematica Symbol)
InverseJacobiDN[v, m] gives the inverse Jacobi elliptic function dn -1 (v \[VerticalSeparator] m).
InverseJacobiDS   (Built-in Mathematica Symbol)
InverseJacobiDS[v, m] gives the inverse Jacobi elliptic function ds -1 (v \[VerticalSeparator] m).
InverseJacobiND   (Built-in Mathematica Symbol)
InverseJacobiND[v, m] gives the inverse Jacobi elliptic function nd -1 (v \[VerticalSeparator] m).
InverseJacobiSC   (Built-in Mathematica Symbol)
InverseJacobiSC[v, m] gives the inverse Jacobi elliptic function sc -1 (v \[VerticalSeparator] m).
InverseJacobiSD   (Built-in Mathematica Symbol)
InverseJacobiSD[v, m] gives the inverse Jacobi elliptic function sd -1 (v \[VerticalSeparator] m).
InverseJacobiSN   (Built-in Mathematica Symbol)
InverseJacobiSN[v, m] gives the inverse Jacobi elliptic function sn -1 (v \[VerticalSeparator] m).
Setting Up Functions with Optional ...   (Mathematica Tutorial)
When you define a complicated function, you will often want to let some of the arguments of the function be "optional". If you do not give those arguments explicitly, you ...
Constrained Optimization in ...   (Mathematica Tutorial)
[1] Mehrotra, S. "On the Implementation of a Primal-Dual Interior Point Method." SIAM Journal on Optimization 2 (1992): 575–601. [2] Nelder, J.A. and R. Mead. "A Simplex ...
1 ... 48|49|50|51|52|53|54 ... 110 Previous Next

...