Fibonacci[n] gives the Fibonacci number F_n. Fibonacci[n, x] gives the Fibonacci polynomial F_n (x).
FrechetDistribution[\[Alpha], \[Beta]] represents the Frechet distribution with shape parameter \[Alpha] and scale parameter \[Beta].FrechetDistribution[\[Alpha], \[Beta], ...
GumbelDistribution[\[Alpha], \[Beta]] represents a Gumbel distribution with location parameter \[Alpha] and scale parameter \[Beta].
StateFeedbackGains[ss, {p_1, p_2, ..., p_n}] gives the state feedback gain matrix for the StateSpaceModel object ss such that the poles of the closed-loop system are p_i.
ListStreamPlot[array] generates a stream plot from an array of vector field values.ListStreamPlot[{{{x_1, y_1}, {vx_1, vy_1}}, ...}] generates a stream plot from vector field ...
MaxStableDistribution[\[Mu], \[Sigma], \[Xi]] represents a generalized maximum extreme value distribution with location parameter \[Mu], scale parameter \[Sigma], and shape ...
MinStableDistribution[\[Mu], \[Sigma], \[Xi]] represents a generalized minimum extreme value distribution with location parameter \[Mu], scale parameter \[Sigma], and shape ...
You can import XML data into Mathematica using the standard Import function, which has the following syntax. Importing files. The first argument specifies the file to be ...
HyperbolicDistribution[\[Alpha], \[Beta], \[Delta], \[Mu]] represents a hyperbolic distribution with location parameter \[Mu], scale parameter \[Delta], shape parameter ...
ListPlot[{y_1, y_2, ...}] plots points corresponding to a list of values, assumed to correspond to x coordinates 1, 2, .... ListPlot[{{x_1, y_1}, {x_2, y_2}, ...}] plots a ...