The Padé approximation is a rational function that can be thought of as a generalization of a Taylor polynomial. A rational function is the ratio of polynomials. Because ...
InverseJacobiCD[v, m] gives the inverse Jacobi elliptic function cd -1 (v \[VerticalSeparator] m).
InverseJacobiCN[v, m] gives the inverse Jacobi elliptic function cn -1 (v \[VerticalSeparator] m).
InverseJacobiCS[v, m] gives the inverse Jacobi elliptic function cs -1 (v \[VerticalSeparator] m).
InverseJacobiDN[v, m] gives the inverse Jacobi elliptic function dn -1 (v \[VerticalSeparator] m).
InverseJacobiDS[v, m] gives the inverse Jacobi elliptic function ds -1 (v \[VerticalSeparator] m).
InverseJacobiND[v, m] gives the inverse Jacobi elliptic function nd -1 (v \[VerticalSeparator] m).
InverseJacobiSC[v, m] gives the inverse Jacobi elliptic function sc -1 (v \[VerticalSeparator] m).
InverseJacobiSD[v, m] gives the inverse Jacobi elliptic function sd -1 (v \[VerticalSeparator] m).
InverseJacobiSN[v, m] gives the inverse Jacobi elliptic function sn -1 (v \[VerticalSeparator] m).