NoncentralBetaDistribution[\[Alpha], \[Beta], \[Delta]] represents a noncentral beta distribution with shape parameters \[Alpha], \[Beta] and noncentrality parameter \[Delta].
NoncentralChiSquareDistribution[\[Nu], \[Lambda]] represents a noncentral \[Chi]^2 distribution with \[Nu] degrees of freedom and noncentrality parameter \[Lambda].
PascalDistribution[n, p] represents a Pascal distribution with parameters n and p.
RotationTransform[\[Theta]] gives a TransformationFunction that represents a rotation in 2D by \[Theta] radians about the origin.RotationTransform[\[Theta], p] gives a 2D ...
SiegelTukeyTest[{data_1, data_2}] tests whether the variances of data_1 and data_2 are equal.SiegelTukeyTest[dspec, \[Sigma]_0^2] tests a dispersion measure against ...
SkewNormalDistribution[\[Mu], \[Sigma], \[Alpha]] represents a skew-normal distribution with shape parameter \[Alpha], location parameter \[Mu], and scale parameter \[Sigma].
TukeyLambdaDistribution[\[Lambda]] represents Tukey's lambda distribution with shape parameter \[Lambda].TukeyLambdaDistribution[\[Lambda], \[Mu], \[Sigma]] represents ...
Cluster analysis is an unsupervised learning technique used for classification of data. Data elements are partitioned into groups called clusters that represent proximate ...
There are many variants of quasi-Newton methods. In all of them, the idea is to base the matrix B_k in the quadratic model on an approximation of the Hessian matrix built up ...
SurvivalDistribution[{e_1, e_2, ...}] represents a survival distribution with event times e_i.SurvivalDistribution[{w_1, w_2, ...} -> {e_1, e_2, ...}] represents a survival ...