Linear programming problems are optimization problems where the objective function and constraints are all linear. Mathematica has a collection of algorithms for solving ...
FindFit
(Built-in Mathematica Symbol) FindFit[data, expr, pars, vars] finds numerical values of the parameters pars that make expr give a best fit to data as a function of vars. The data can have the form {{x_1, ...
MomentConvert[mexpr, form] converts the moment expression mexpr to the specified form.
RSolve
(Built-in Mathematica Symbol) RSolve[eqn, a[n], n] solves a recurrence equation for a[n]. RSolve[{eqn_1, eqn_2, ...}, {a_1[n], a_2[n], ...}, n] solves a system of recurrence equations. RSolve[eqn, a[n_1, ...
DistributionChart[{data_1, data_2, ...}] makes a distribution chart with a distribution symbol for each data_i.DistributionChart[{..., w_i[data_i, ...], ..., w_j[data_j, ...
TradingChart[{{date_1, {open_1, high_1, low_1, close_1, volume_1}}, ...}] makes a chart showing prices and volume for each date. TradingChart[{" name", daterange}] makes a ...
Widget["IndexedImagePanel"] represents an indexed image panel.
ErlangDistribution[k, \[Lambda]] represents the Erlang distribution with shape parameter k and rate \[Lambda].
NegativeMultinomialDistribution[n, p] represents a negative multinomial distribution with parameter n and failure probability vector p.
ZTest
(Built-in Mathematica Symbol) ZTest[data] tests whether the mean of the data is zero. ZTest[{data_1, data_2}] tests whether the means of data_1 and data_2 are equal.ZTest[dspec, \[Sigma]] tests for zero ...