FourierSinSeries[expr, t, n] gives the n\[Null]^th-order Fourier sine series expansion of expr in t.FourierSinSeries[expr, {t_1, t_2, ...}, {n_1, n_2, ...}] gives the ...
FourierTrigSeries[expr, t, n] gives the n\[Null]^th-order Fourier trigonometric series expansion of expr in t.FourierTrigSeries[expr, {t_1, t_2, ...}, {n_1, n_2, ...}] gives ...
FourierCosCoefficient[expr, t, n] gives the n\[Null]^th coefficient in the Fourier cosine series expansion of expr.FourierCosCoefficient[expr, {t_1, t_2, ...}, {n_1, n_2, ...
Plot3D
(Built-in Mathematica Symbol) Plot3D[f, {x, x_min, x_max}, {y, y_min, y_max}] generates a three-dimensional plot of f as a function of x and y. Plot3D[{f_1, f_2, ...}, {x, x_min, x_max}, {y, y_min, ...
FourierSinCoefficient[expr, t, n] gives the n\[Null]^th coefficient in the Fourier sine series expansion of expr.FourierSinCoefficient[expr, {t_1, t_2, ...}, {n_1, n_2, ...}] ...
Normal
(Built-in Mathematica Symbol) Normal[expr] converts expr to a normal expression, from a variety of special forms.
Mathematica's symbolic timing framework allows timing information not only to be analyzed but also to be used in the structure of algorithms. Mathematica provides functions ...
BeniniDistribution[\[Alpha], \[Beta], \[Sigma]] represents a Benini distribution with shape parameters \[Alpha] and \[Beta] and scale parameter \[Sigma].
Mathematica efficiently implements state-of-the-art data classification algorithms, allowing you to visualize distributions, search for nearest neighbors, and do cluster ...
Many times in statistical analysis you may need to know if a population mean is significantly different from some reference value. This is a type of t-test if the population ...