
A Library for Synchronous Control Systems
in Modelica

Martin Otter        Bernhard Thiele           Hilding Elmqvist

DLR                                        Dassault Systèmes

Institute of System Dynamics and Control

Presented at the Modelica’2012 Conference
Munich, Sept. 3-5, 2012

This slide set has be updated to the changes 
of the library performed after the conference.

Slide 2

Content

• Introduction

• Clocks

• Sample and Hold

• Sub- and Super-sampling

• Discretizing Continuous Blocks

• Modelica_DeviceDrivers library

• Conclusions



Slide 3

Introduction

• Synchronous language elements of Modelica 3.3
are “low level”:

• Modelica_Synchronous library developed to access language elements in a 
convenient way graphically:

// speed sensor
vd = sample(v, Clock(0.01));

// P controller for speed
u = K*(vref-vd);

// force actuator
f = hold(u);

Slide 4

Blocks to generate clock signals

Blocks operating on clock signals
(e.g. sub-sampling a clock signal)

Blocks operating on clocked signals of type Real
(e.g. sub-sampling a Real signal, PI block, FIR filter)

Blocks operating on clocked signals of type Boolean

Blocks operating on clocked signals of type Integer



Slide 5

time t
t0 t1 t3

r(ti)

t2

c(ti)

Clocks

New base data type: Clock
Variables associated to a clock have only a value at the clock tick.

c(ti): Clock
r(ti): Variable associated to c 

Similar to Real, Integer, Boolean, introduced input/output Clock connectors:

connector ClockInput = input Clock;

connector ClockOutput = output Clock;

Slide 6

Blocks that generate clock signals

Generates a periodic clock with a Real period
parameter Modelica.SIunits.Time period;
ClockOutput y;

equation
y = Clock(period);

Generates a periodic clock as an integer multiple
of a resolution (defined by an enumeration).

Code for 20 ms period:
y = superSample(Clock(20), 1000);

Clock with period 20 s super-sample clock with 1000

Generates an event clock: The clock ticks whenever the 
continuous-time Boolean input changes from false to true.

y = Clock(u);

period = 20 / 1000 = 20 ms



Slide 7

Sample and Hold

Discrete-time PI controller

Purely algebraic block from
Modelica.Blocks.Math

y = sample(u, clock);

Samples a continuous-time signal
and generates a clocked signal.

y = sample(u);

Holds a clocked signal and generates a continuous-time 
signal. Before the first clock tick, the continuous-time output 
y is set to parameter y_start;   y = hold(u);

Slide 8

Sub- and Super-Sampling

Defines that the output signal is an integer 
factor faster as the input signal, using a “hold” 
semantics for the signal. By default, this factor 
is inferred. It can also be defined explicitly.

y = superSample(u);



Slide 9

Defines that the output signal is an integer 
factor slower as the input signal, picking 
every n-th value of the input.

y = subSample(u,factor);

Slide 10

Several other blocks to change the clock of a signal, such as 



Slide 11

Discretizing Continuous Blocks

A clocked partition can consists of differential equations,
provided an integrator is associated to the corresponding clock
(the differential equations are solved at one clock tick with this integrator).

Continuous-time
PI controller

Slide 12

Especially, inverse, continuous-time models can be discretized
(this is not possible with Modelica 3.2):

clocked controller

inverse plant model
(input T_c becomes output
output c becomes input)



Slide 13

Modelica_DeviceDrivers library

• New, free library by DLR that interfaces 
hardware drivers.

• Cross platform (Windows and Linux)

• Realtime synchronization, 
UDP, joystick, keyboard, etc. 

• Basic functionality provided with
Modelica functions.

• Convenience blocks based either on
Modelica_Synchronous library or on
Modelica 3.1 when-clauses. 

• Generic packaging system, e.g. to
pack 8 Booleans on 1 Integer.

• Currently supported for UDP, shared
memory, and (prototypical) CAN bus

Slide 14

Conclusions (1)

• Main purpose:
Encapsulating the Modelica 3.3 synchronous language elements with an easy 
to use graphical user interface (the code of most blocks is very simple!!)
Makes definition of sampled-data systems much simpler and safer.

• Should work with every Modelica tool that supports Modelica 3.3.

• Shall be included in the Modelica Standard Library after an evaluation period.

• Available for MA members on internal svn server.
Released version is stored publicly on MA web.

Modelica_Synchronous library



Slide 15

Conclusions (2)

• Main purpose:
Access device drivers on Windows and Linux PCs from a Modelica block.

• Should work with every Modelica tool that supports
external Modelica functions (with C-code included in include annotation)
synchronous elements of Modelica 3.3 (for Modelica 3.3 conveníence blocks).

• Shall be included in the Modelica Standard Library after an evaluation period.

• Available for MA members on internal svn server.
Released version is stored publicly on MA web.

Modelica_DeviceDrivers library


