NInverseFourierSinTransform


gives a numerical approximation to the inverse Fourier sine transform of expr evaluated at the numerical value t, where expr is a function of ω.

DetailsDetails

  • To use , you first need to load the Fourier Series Package using Needs["FourierSeries`"].
  • The numerical approximation to the inverse Fourier sine transform of expr is by default defined to be NIntegrate[expr Sin[ω t],{ω,0,}].
  • Different choices for the definition of the inverse Fourier sine transform can be specified using the option FourierParameters.
  • With the setting FourierParameters->{a,b}, the inverse Fourier sine transform computed by is 2NIntegrate[expr Sin[b ω t],{ω,0,}].
  • The parameter b in the setting FourierParameters->{a,b} must be numeric.
  • In addition to the option FourierParameters, can also accept the options available to NIntegrate. These options are passed directly to NIntegrate.

ExamplesExamplesopen allclose all

Basic Examples  (1)Basic Examples  (1)

In[1]:=
Click for copyable input

Numerical approximation for an inverse Fourier sine transform:

In[2]:=
Click for copyable input
Out[2]=

Compare with the answer from symbolic evaluation:

In[3]:=
Click for copyable input
Out[3]=
In[4]:=
Click for copyable input
Out[4]=