finds the rational polynomial function of x, with numerator order m and denominator order n, that gives a mini-max approximation to the curve with x and y coordinates and generated as a function of t on the interval to .

finds the mini-max approximation, starting the iterative algorithm with approx.


  • To use , you first need to load the Function Approximations Package using Needs["FunctionApproximations`"].
  • by default minimizes the maximum value of the relative error between the approximation and expr.
  • computes the error using a factor of g. In this case the mini-max approximation returned by is the rational function that minimizes the maximum value of the quantity .
  • returns , where abscissa is a list of the abscissas where the relative error is a local maximum, approximation is the rational approximant, and maxerror is the global maximum of the relative error.
  • When an approximation is given as the second argument of , it must have the same form as the result returned by .
  • The following options can be given:
  • Bias0bias in the automatic choice of interpolation points
    Brake{5,5}braking to apply on iterative algorithm
    DerivativesAutomaticfunction to use for derivatives
    MaxIterations20maximum number of iterations to use
    PlotFlagFalsewhether to plot relative error
    PrintFlagFalsewhether to print status information
    WorkingPrecisionMachinePrecisionprecision to use in internal computations
Translate this page: