MultivariateTDistribution
MultivariateTDistribution[Σ,m]
represents the multivariate Student distribution with scale matrix Σ and degrees of freedom parameter m.
MultivariateTDistribution[μ,Σ,m]
represents the multivariate Student distribution with location μ, scale matrix Σ, and m degrees of freedom.
Details and Options
- To use MultivariateTDistribution, you first need to load the Multivariate Statistics Package using Needs["MultivariateStatistics`"].
- The probability density for vector x in a multivariate t distribution is proportional to (1+(x-μ).Σ-1.(x-μ)/m)-(m+Length[Σ])/2.
- The scale matrix Σ can be any real‐valued symmetric positive definite matrix.
- With specified location μ, μ can be any vector of real numbers, and Σ can be any symmetric positive definite p×p matrix with p=Length[μ].
- The multivariate Student distribution characterizes the ratio of a multinormal to the covariance between the variates.
- MultivariateTDistribution can be used with such functions as Mean, CDF, and RandomReal.
Examples
open allclose allBasic Examples (3)
Text
Wolfram Research (2007), MultivariateTDistribution, Wolfram Language function, https://reference.wolfram.com/language/MultivariateStatistics/ref/MultivariateTDistribution.html (updated 2008).
CMS
Wolfram Language. 2007. "MultivariateTDistribution." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2008. https://reference.wolfram.com/language/MultivariateStatistics/ref/MultivariateTDistribution.html.
APA
Wolfram Language. (2007). MultivariateTDistribution. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/MultivariateStatistics/ref/MultivariateTDistribution.html