Logic & Boolean Algebra

The Wolfram Language represents Boolean expressions in symbolic form, so they can not only be evaluated, but also be symbolically manipulated and transformed. Incorporating state-of-the-art quantifier elimination, satisfiability, and equational logic theorem proving, the Wolfram Language provides a powerful framework for investigations based on Boolean algebra.

ReferenceReference

Logical Operators

And(&&,)  ▪  Or(||,)  ▪  Not(!,¬)  ▪  Nand()  ▪  Nor()  ▪  Xor()  ▪  Implies()  ▪  Equivalent()  ▪  Equal(==)  ▪  Unequal(!=)  ▪  ...

True, False symbolic truth values

Boole convert symbolic truth values to 0 and 1

AllTrue  ▪  AnyTrue  ▪  NoneTrue

Boolean Computation »

BooleanFunction general Boolean function

BooleanConvert  ▪  BooleanMinimize  ▪  SatisfiableQ  ▪  ...

Mathematical Logic

FullSimplify simplify logic expressions and prove theorems

ForAll (), Exists () quantifiers

Resolve  ▪  Reduce  ▪  FindInstance

Boolean Vector Operations

Nearest, FindClusters operate on Boolean vectors

HammingDistance  ▪  MatchingDissimilarity  ▪  ...