Element

Element[x,dom]

or xdom asserts that x is an element of the domain dom.

Element[x,reg]

or xreg asserts that x is an element of the region reg.

Element[x1|x2|,dom]

asserts that all the xi are elements of dom.

Element[patt,dom]

asserts that any expression matching the pattern patt is an element of dom.

Details

  • xdom can be entered as x el dom or x[Element]dom.
  • Element can be used to set up assumptions in Simplify and related functions.
  • dom may be a numeric domain or a region in .
  • Possible domains dom are:
  • Algebraicsalgebraic numbers
    BooleansTrue or False
    Complexescomplex numbers
    Integersintegers
    Primesprime numbers
    Rationalsrational numbers
    Realsreal numbers
  • Possible regions reg are defined by RegionQ.
  • xdom if possible evaluates immediately when x is numeric.
  • For a domain dom, {x1,x2,}dom is equivalent to (x1|x2|)dom.
  • For a region reg, {x1,x2,}reg asserts that the point with coordinates x1,x2, belongs to reg.
  • {x1,x2,}dom evaluates to (x1|x2|)dom if its truth or falsity cannot immediately be determined.

Examples

open allclose all

Basic Examples  (5)

Test whether is an element of the reals:

In[1]:=
Click for copyable input
Out[1]=

Test whether the point belongs to the unit disk:

In[1]:=
Click for copyable input
Out[1]=

Express domain membership for an expression:

In[1]:=
Click for copyable input
Out[1]=

Assert that the point belongs to the unit ball:

In[1]:=
Click for copyable input
Out[1]=

Use element assertions to integrate over a region:

In[2]:=
Click for copyable input
Out[2]=

Or to optimize over a region:

In[3]:=
Click for copyable input
Out[3]=

Enter using elem:

In[1]:=
Click for copyable input
Out[1]=

Scope  (9)

Properties & Relations  (2)

Possible Issues  (1)

See Also

Simplify  MemberQ  IntegerQ  Assumptions  Condition  PatternTest  Equal  Less  Divisible  CoprimeQ  Booleans  Primes  Exists  ForAll  Distributed

Tutorials

Introduced in 1999
(4.0)
| Updated in 2014
(10.0)