GeometricTransformation

GeometricTransformation[g,tfun]

represents the result of applying the transformation function tfun to the geometric objects corresponding to the primitives g.

GeometricTransformation[g,m]

transforms geometric objects in g by effectively replacing every point r by m.r.

GeometricTransformation[g,{m,v}]

effectively replaces every point r by m.r+v.

GeometricTransformation[g,{t1,t2,}]

represents multiple copies of g transformed by a collection of transformations.

Details and Options

Examples

open allclose all

Basic Examples  (3)

Transform a 2D object:

Transform a 3D object:

Multiple transforms can be applied to the same object:

Scope  (5)

Transformation applied to a 2D shape:

Transformation applied to a 3D shape:

Objects with scaled coordinates:

Keep the rightmost point of the circle fixed:

Create nested transformations:

Properties & Relations  (2)

Using {m,v} as the second argument is the same as using AffineTransform[{m,v}]:

When possible, Normal will perform the transformations explicitly:

Neat Examples  (1)

Rotating and moving a cuboid along a space curve:

Wolfram Research (2007), GeometricTransformation, Wolfram Language function, https://reference.wolfram.com/language/ref/GeometricTransformation.html (updated 2010).

Text

Wolfram Research (2007), GeometricTransformation, Wolfram Language function, https://reference.wolfram.com/language/ref/GeometricTransformation.html (updated 2010).

CMS

Wolfram Language. 2007. "GeometricTransformation." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2010. https://reference.wolfram.com/language/ref/GeometricTransformation.html.

APA

Wolfram Language. (2007). GeometricTransformation. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/GeometricTransformation.html

BibTeX

@misc{reference.wolfram_2024_geometrictransformation, author="Wolfram Research", title="{GeometricTransformation}", year="2010", howpublished="\url{https://reference.wolfram.com/language/ref/GeometricTransformation.html}", note=[Accessed: 12-December-2024 ]}

BibLaTeX

@online{reference.wolfram_2024_geometrictransformation, organization={Wolfram Research}, title={GeometricTransformation}, year={2010}, url={https://reference.wolfram.com/language/ref/GeometricTransformation.html}, note=[Accessed: 12-December-2024 ]}