GroupElements

GroupElements[group]

returns the list of all elements of group.

GroupElements[group,{r1,,rk}]

returns the elements numbered r1,,rk in group in the standard order.

Details and Options

  • The elements of a permutation group are found by constructing a strong generating set representation of the group.
  • The order of elements returned by GroupElements depends on the base of the strong generating set. An explicit base can be chosen by setting GroupActionBase->{p1,p2,}.
  • GroupElements[group,{1}] gives the identity element for any choice of the group base.
  • Negative positions are assumed to count from the end.

Examples

open allclose all

Basic Examples  (3)

Elements of a cyclic permutation group:

In[1]:=
Click for copyable input
Out[1]=

First three elements:

In[1]:=
Click for copyable input
Out[1]=

Last element:

In[1]:=
Click for copyable input
Out[1]=

Scope  (2)

Options  (1)

Applications  (1)

Properties & Relations  (1)

Possible Issues  (3)

Neat Examples  (1)

See Also

Cycles  PermutationGroup  GroupElementPosition  Permutations

Tutorials

Introduced in 2010
(8.0)