# InverseMellinTransform

InverseMellinTransform[expr,s,x]

gives the inverse Mellin transform of expr.

# Details and Options

• The inverse Mellin transform of a function is defined to be , where the integration is along a vertical line , lying in a strip in which the function is holomorphic. In some cases, the strip of holomorphy may extend to a half-plane.
• ConditionalExpression[expr,α<Re[s]<β] can be used to indicate the strip of holomorphy.  »
• The following options can be given:
•  Assumptions \$Assumptions assumptions on parameters GenerateConditions False whether to generate results that involve conditions on parameters Method Automatic what method to use
• GenerateConditions can be used to obtain the strip of holomorphy.  »
• Assumptions can be used to specify a strip of holomorphy.  »
• If both Assumptions and ConditionalExpression are used to constrain the strip of holomorphy, then the intersection of the strips is used.
• In TraditionalForm, InverseMellinTransform is output using .

# Examples

open allclose all

## Basic Examples(2)

Compute the InverseMellinTransform of a function:

 In[1]:=
 Out[1]=

InverseMellinTransform for a product of functions:

 In[1]:=
 Out[1]=
 In[2]:=
 Out[2]=