Combinatorica`
Combinatorica`

MinimumVertexCover

As of Version 10, most of the functionality of the Combinatorica package is built into the Wolfram System. »

MinimumVertexCover[g]

finds a minimum vertex cover of graph g.

Details and Options

  • MinimumVertexCover functionality is now available in the built-in Wolfram Language function FindVertexCover.
  • To use MinimumVertexCover, you first need to load the Combinatorica Package using Needs["Combinatorica`"].
  • For bipartite graphs, the function uses the polynomial-time Hungarian algorithm. For everything else, the function uses brute force.
Wolfram Research (2012), MinimumVertexCover, Wolfram Language function, https://reference.wolfram.com/language/Combinatorica/ref/MinimumVertexCover.html.

Text

Wolfram Research (2012), MinimumVertexCover, Wolfram Language function, https://reference.wolfram.com/language/Combinatorica/ref/MinimumVertexCover.html.

CMS

Wolfram Language. 2012. "MinimumVertexCover." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/Combinatorica/ref/MinimumVertexCover.html.

APA

Wolfram Language. (2012). MinimumVertexCover. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/Combinatorica/ref/MinimumVertexCover.html

BibTeX

@misc{reference.wolfram_2024_minimumvertexcover, author="Wolfram Research", title="{MinimumVertexCover}", year="2012", howpublished="\url{https://reference.wolfram.com/language/Combinatorica/ref/MinimumVertexCover.html}", note=[Accessed: 02-January-2025 ]}

BibLaTeX

@online{reference.wolfram_2024_minimumvertexcover, organization={Wolfram Research}, title={MinimumVertexCover}, year={2012}, url={https://reference.wolfram.com/language/Combinatorica/ref/MinimumVertexCover.html}, note=[Accessed: 02-January-2025 ]}