BezierFunction
✖
BezierFunction
✖
BezierFunction[{pt1,pt2,…}]
represents a Bézier function for a curve defined by the control points pti.
Details and Options
- BezierFunction[…][u] gives the point on a Bézier curve corresponding to parameter u.
- BezierFunction[…][u,v,…] gives the point on a general Bézier manifold corresponding to the parameters u, v, ….
- The embedding dimension for the curve represented by BezierFunction[{pt1,pt2,…}] is given by the length of the lists pti.
- BezierFunction[array] can handle arrays of any depth, representing manifolds of any dimension.
- The dimension of the manifold represented by BezierFunction[array] is given by ArrayDepth[array]-1. The lengths of the lists that occur at the lowest level in array define the embedding dimension.
- The parameters u, v, … by default run from 0 to 1 over the domain of the curve or other manifold.
Examples
Basic Examples (2)Summary of the most common use cases
Construct a Bézier curve using a list of control points:
In[1]:=1
✖
https://wolfram.com/xid/0bh1zv523jgc5e-bxhaon
In[2]:=2
✖
https://wolfram.com/xid/0bh1zv523jgc5e-dcjd8s
Out[2]=2
Apply the function to find a point on the curve:
In[3]:=3
✖
https://wolfram.com/xid/0bh1zv523jgc5e-cm9h6
Out[3]=3
Plot the Bézier curve with the control points:
In[4]:=4
✖
https://wolfram.com/xid/0bh1zv523jgc5e-bwcx6y
Out[4]=4
Single cubic Bézier surface patch:
In[1]:=1
✖
https://wolfram.com/xid/0bh1zv523jgc5e-d7ox63
In[2]:=2
✖
https://wolfram.com/xid/0bh1zv523jgc5e-fhp1bn
Out[2]=2
In[3]:=3
✖
https://wolfram.com/xid/0bh1zv523jgc5e-l8herx
Out[3]=3
Wolfram Research (2008), BezierFunction, Wolfram Language function, https://reference.wolfram.com/language/ref/BezierFunction.html.
✖
Wolfram Research (2008), BezierFunction, Wolfram Language function, https://reference.wolfram.com/language/ref/BezierFunction.html.
Text
Wolfram Research (2008), BezierFunction, Wolfram Language function, https://reference.wolfram.com/language/ref/BezierFunction.html.
✖
Wolfram Research (2008), BezierFunction, Wolfram Language function, https://reference.wolfram.com/language/ref/BezierFunction.html.
CMS
Wolfram Language. 2008. "BezierFunction." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/BezierFunction.html.
✖
Wolfram Language. 2008. "BezierFunction." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/BezierFunction.html.
APA
Wolfram Language. (2008). BezierFunction. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/BezierFunction.html
✖
Wolfram Language. (2008). BezierFunction. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/BezierFunction.html
BibTeX
✖
@misc{reference.wolfram_2024_bezierfunction, author="Wolfram Research", title="{BezierFunction}", year="2008", howpublished="\url{https://reference.wolfram.com/language/ref/BezierFunction.html}", note=[Accessed: 10-January-2025
]}
BibLaTeX
✖
@online{reference.wolfram_2024_bezierfunction, organization={Wolfram Research}, title={BezierFunction}, year={2008}, url={https://reference.wolfram.com/language/ref/BezierFunction.html}, note=[Accessed: 10-January-2025
]}