FindPostmanTour
✖
FindPostmanTour
Details

- A Chinese postman tour is a tour that traverses each edge at least once.
- FindPostmanTour returns a list of edges consisting of Chinese postman tours.
- FindPostmanTour returns the list {} if no Chinese postman tours exist.
- FindPostmanTour[g] is equivalent to FindPostmanTour[g,1].
- FindPostmanTour works with undirected graphs, directed graphs, weighted graphs, and multigraphs.
Examples
open allclose allBasic Examples (2)Summary of the most common use cases

https://wolfram.com/xid/0bh05gfvekxzyr-cs2avj

https://wolfram.com/xid/0bh05gfvekxzyr-d3j6vr


https://wolfram.com/xid/0bh05gfvekxzyr-x08v5x

Find several Chinese postman tours:

https://wolfram.com/xid/0bh05gfvekxzyr-tstla2

https://wolfram.com/xid/0bh05gfvekxzyr-h12suj

Scope (8)Survey of the scope of standard use cases
FindPostmanTour works with undirected graphs:

https://wolfram.com/xid/0bh05gfvekxzyr-6xfgzl


https://wolfram.com/xid/0bh05gfvekxzyr-gx301e


https://wolfram.com/xid/0bh05gfvekxzyr-ighgre


https://wolfram.com/xid/0bh05gfvekxzyr-i2s368

Find several Chinese postman tours:

https://wolfram.com/xid/0bh05gfvekxzyr-7yf5pw

Use rules to specify the graph:

https://wolfram.com/xid/0bh05gfvekxzyr-bndh30

FindPostmanTour returns an empty result for a graph with no Chinese postman tours:

https://wolfram.com/xid/0bh05gfvekxzyr-mflle1

FindPostmanTour works with large graphs:

https://wolfram.com/xid/0bh05gfvekxzyr-9r6myk

https://wolfram.com/xid/0bh05gfvekxzyr-hfop3e

Applications (3)Sample problems that can be solved with this function
Find a shortest route that a newspaper carrier can use to distribute newspapers in a neighborhood:

https://wolfram.com/xid/0bh05gfvekxzyr-cn85r0

https://wolfram.com/xid/0bh05gfvekxzyr-2qer8o


https://wolfram.com/xid/0bh05gfvekxzyr-8oel4b


https://wolfram.com/xid/0bh05gfvekxzyr-kmfdmo

Find the most efficient way for a letter carrier to deliver letters, knowing the time it takes to deliver mail on a street and the time it takes to walk a street without delivering mail (deadheading time):

https://wolfram.com/xid/0bh05gfvekxzyr-uhymq
A route that goes through all the streets and minimizes the total deadheading time:

https://wolfram.com/xid/0bh05gfvekxzyr-2fhrgq


https://wolfram.com/xid/0bh05gfvekxzyr-nnx2ex


https://wolfram.com/xid/0bh05gfvekxzyr-xpjz51


https://wolfram.com/xid/0bh05gfvekxzyr-e2nwef


https://wolfram.com/xid/0bh05gfvekxzyr-uoo2fy

Testing combinations of actions in a finite-state machine:

https://wolfram.com/xid/0bh05gfvekxzyr-tstyre

https://wolfram.com/xid/0bh05gfvekxzyr-97m3h


https://wolfram.com/xid/0bh05gfvekxzyr-gd7s69

Properties & Relations (2)Properties of the function, and connections to other functions
An Eulerian graph has a Chinese postman tour:

https://wolfram.com/xid/0bh05gfvekxzyr-3gsxfv


https://wolfram.com/xid/0bh05gfvekxzyr-w1eufl


https://wolfram.com/xid/0bh05gfvekxzyr-fxgz75

It is the same as its Eulerian cycle:

https://wolfram.com/xid/0bh05gfvekxzyr-y1foos

A connected graph has a Chinese postman tour:

https://wolfram.com/xid/0bh05gfvekxzyr-5b71og


https://wolfram.com/xid/0bh05gfvekxzyr-h9dgvf

Neat Examples (1)Surprising or curious use cases

https://wolfram.com/xid/0bh05gfvekxzyr-u0eavy

https://wolfram.com/xid/0bh05gfvekxzyr-4pqe81


https://wolfram.com/xid/0bh05gfvekxzyr-icixe

https://wolfram.com/xid/0bh05gfvekxzyr-dnw6p

Wolfram Research (2012), FindPostmanTour, Wolfram Language function, https://reference.wolfram.com/language/ref/FindPostmanTour.html (updated 2015).
Text
Wolfram Research (2012), FindPostmanTour, Wolfram Language function, https://reference.wolfram.com/language/ref/FindPostmanTour.html (updated 2015).
Wolfram Research (2012), FindPostmanTour, Wolfram Language function, https://reference.wolfram.com/language/ref/FindPostmanTour.html (updated 2015).
CMS
Wolfram Language. 2012. "FindPostmanTour." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2015. https://reference.wolfram.com/language/ref/FindPostmanTour.html.
Wolfram Language. 2012. "FindPostmanTour." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2015. https://reference.wolfram.com/language/ref/FindPostmanTour.html.
APA
Wolfram Language. (2012). FindPostmanTour. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/FindPostmanTour.html
Wolfram Language. (2012). FindPostmanTour. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/FindPostmanTour.html
BibTeX
@misc{reference.wolfram_2025_findpostmantour, author="Wolfram Research", title="{FindPostmanTour}", year="2015", howpublished="\url{https://reference.wolfram.com/language/ref/FindPostmanTour.html}", note=[Accessed: 30-March-2025
]}
BibLaTeX
@online{reference.wolfram_2025_findpostmantour, organization={Wolfram Research}, title={FindPostmanTour}, year={2015}, url={https://reference.wolfram.com/language/ref/FindPostmanTour.html}, note=[Accessed: 30-March-2025
]}