gives the characteristic value for odd Mathieu functions with characteristic exponent r and parameter q.


MathieuCharacteristicB
gives the characteristic value for odd Mathieu functions with characteristic exponent r and parameter q.
Details

- Mathematical function, suitable for both symbolic and numerical manipulation.
- The characteristic value
gives the value of the parameter
in
for which the solution has the form
where
is an odd function of
with period
.
- When r is not a real integer, MathieuCharacteristicB gives the same results as MathieuCharacteristicA.
- For certain special arguments, MathieuCharacteristicB automatically evaluates to exact values.
- MathieuCharacteristicB can be evaluated to arbitrary numerical precision.
- MathieuCharacteristicB automatically threads over lists.
Examples
open all close allBasic Examples (3)
Scope (19)
Numerical Evaluation (6)
The precision of the output tracks the precision of the input:
Evaluate efficiently at high precision:
Compute average-case statistical intervals using Around:
Compute the elementwise values of an array:
Or compute the matrix MathieuCharacteristicB function using MatrixFunction:
Specific Values (2)
Simple exact values are generated automatically:
Find the positive maximum of MathieuCharacteristicB[3,q]:
Visualization (3)
Plot the MathieuCharacteristicB function for integer parameters:
Plot the MathieuCharacteristicB function for noninteger parameters:
Plot the real part of MathieuCharacteristicB:
Plot the imaginary part of MathieuCharacteristicB:
Function Properties (6)
The real domain of MathieuCharacteristicB:
is neither non-increasing nor non-decreasing:
MathieuCharacteristicB threads elementwise over lists:
TraditionalForm formatting:
Series Expansions (2)
Find the Taylor expansion using Series:
Applications (4)
Symmetric periodic solutions of the Mathieu differential equation:
This shows the stability diagram for the Mathieu equation:
As a function of the first argument, MathieuCharacteristicB is a piecewise continuous function (called bands and band gaps in solid-state physics):
Solve the Laplace equation in an ellipse using separation of variables:
This plots an eigenfunction. It vanishes at the ellipse boundary:
Possible Issues (1)
There is no zero-order MathieuCharacteristicB:

See Also
MathieuCharacteristicA MathieuS MathieuSPrime MathieuCharacteristicExponent
Function Repository: MathieuEllipticSin
Tech Notes
Related Guides
Related Links
History
Introduced in 1996 (3.0)
Text
Wolfram Research (1996), MathieuCharacteristicB, Wolfram Language function, https://reference.wolfram.com/language/ref/MathieuCharacteristicB.html.
CMS
Wolfram Language. 1996. "MathieuCharacteristicB." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/MathieuCharacteristicB.html.
APA
Wolfram Language. (1996). MathieuCharacteristicB. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/MathieuCharacteristicB.html
BibTeX
@misc{reference.wolfram_2025_mathieucharacteristicb, author="Wolfram Research", title="{MathieuCharacteristicB}", year="1996", howpublished="\url{https://reference.wolfram.com/language/ref/MathieuCharacteristicB.html}", note=[Accessed: 07-August-2025]}
BibLaTeX
@online{reference.wolfram_2025_mathieucharacteristicb, organization={Wolfram Research}, title={MathieuCharacteristicB}, year={1996}, url={https://reference.wolfram.com/language/ref/MathieuCharacteristicB.html}, note=[Accessed: 07-August-2025]}