MinimalPolynomial
✖
MinimalPolynomial
gives the minimal polynomial in x for which the algebraic number s is a root.
gives the minimal polynomial of u over the -element subfield of the ambient field of u.
gives the minimal polynomial of u relative to the finite field embedding emb.
Details and Options

- MinimalPolynomial[s,x] gives the lowest-degree polynomial with integer coefficients, positive leading coefficient and the GCD of all coefficients equal to
for which the algebraic number s is a root.
- MinimalPolynomial[s] gives a pure function representation of the minimal polynomial of s.
- MinimalPolynomial[s,x,Extension->a] finds the characteristic polynomial of
over the field
.
- For a FiniteFieldElement object u in a finite field
of characteristic
, MinimalPolynomial[u, x] gives the lowest-degree monic polynomial with integer coefficients between
and
for which u is a root.
- MinimalPolynomial[u,x,k] gives the lowest-degree monic polynomial with coefficients from the
-element subfield of
for which u is a root. k needs to be a divisor of the extension degree of
over
.
- If emb=FiniteFieldEmbedding[e1e2], then MinimalPolynomial[u,x,emb] gives the polynomial with coefficients in the ambient field of e1 that map through emb to the coefficients of the minimal polynomial of u over the image of emb.
Examples
open allclose allBasic Examples (2)Summary of the most common use cases
Minimal polynomials of algebraic numbers:

https://wolfram.com/xid/01yqbnyrdea-im1cws


https://wolfram.com/xid/01yqbnyrdea-dob32q

Minimal polynomials of finite field elements:

https://wolfram.com/xid/01yqbnyrdea-x0bw4

https://wolfram.com/xid/01yqbnyrdea-bnly9d


https://wolfram.com/xid/01yqbnyrdea-jhf06g

Scope (6)Survey of the scope of standard use cases
Algebraic Numbers (5)

https://wolfram.com/xid/01yqbnyrdea-mglz4c


https://wolfram.com/xid/01yqbnyrdea-6aq8wg

Root objects:

https://wolfram.com/xid/01yqbnyrdea-bg1khb

AlgebraicNumber objects:

https://wolfram.com/xid/01yqbnyrdea-64kngp

MinimalPolynomial automatically threads over lists:

https://wolfram.com/xid/01yqbnyrdea-o0e8qn

Pure function minimal polynomial:

https://wolfram.com/xid/01yqbnyrdea-crxhkk

Finite Field Elements (1)
Represent a finite field with characteristic and extension degree
:

https://wolfram.com/xid/01yqbnyrdea-o809yt


https://wolfram.com/xid/01yqbnyrdea-7hbsh

Minimal polynomial over with coefficients given as elements of
:

https://wolfram.com/xid/01yqbnyrdea-ib6kob

Minimal polynomial over the -element subfield of
:

https://wolfram.com/xid/01yqbnyrdea-j8qrez

Embed a field with
elements in
:

https://wolfram.com/xid/01yqbnyrdea-441js

Minimal polynomial relative to the finite field embedding :

https://wolfram.com/xid/01yqbnyrdea-m9l22y

Pure function minimal polynomial:

https://wolfram.com/xid/01yqbnyrdea-yumhl

Options (1)Common values & functionality for each option
Applications (3)Sample problems that can be solved with this function
Construct a polynomial with a root :

https://wolfram.com/xid/01yqbnyrdea-pqp


https://wolfram.com/xid/01yqbnyrdea-sma

The degree of the number field generated by (2-I)/Sqrt[5]:

https://wolfram.com/xid/01yqbnyrdea-768nke

Check whether a finite field element generates its ambient field:

https://wolfram.com/xid/01yqbnyrdea-ep9jbd

https://wolfram.com/xid/01yqbnyrdea-fos1qn


https://wolfram.com/xid/01yqbnyrdea-q8yyvz

Properties & Relations (6)Properties of the function, and connections to other functions
Compute the extension that defines the number field :

https://wolfram.com/xid/01yqbnyrdea-djwm7c

Find the characteristic polynomial of over
:

https://wolfram.com/xid/01yqbnyrdea-prsinh

The characteristic polynomial is a power of the minimal polynomial of :

https://wolfram.com/xid/01yqbnyrdea-le0ane

Use FrobeniusAutomorphism to find all conjugates of a finite field element a:

https://wolfram.com/xid/01yqbnyrdea-carevw

The conjugates are roots of the minimal polynomial of a:

https://wolfram.com/xid/01yqbnyrdea-bgtnzk

If MinimalPolynomial[a,x]xn+cn-1xn-1+⋯+c0, then :

https://wolfram.com/xid/01yqbnyrdea-gdoney


https://wolfram.com/xid/01yqbnyrdea-8ovzq


https://wolfram.com/xid/01yqbnyrdea-ig8hf

If MinimalPolynomial[a,x,k]xn+cn-1xn-1+⋯+c0, then :

https://wolfram.com/xid/01yqbnyrdea-cjv48r


https://wolfram.com/xid/01yqbnyrdea-o6cps4


https://wolfram.com/xid/01yqbnyrdea-dirv8

If MinimalPolynomial[a,x]xn+cn-1xn-1+⋯+c0, then :

https://wolfram.com/xid/01yqbnyrdea-5x5hb


https://wolfram.com/xid/01yqbnyrdea-b7s0kw


https://wolfram.com/xid/01yqbnyrdea-c3g488

If MinimalPolynomial[a,x,k]xn+cn-1xn-1+⋯+c0, then :

https://wolfram.com/xid/01yqbnyrdea-es2w9k


https://wolfram.com/xid/01yqbnyrdea-ga3ozb


https://wolfram.com/xid/01yqbnyrdea-u2geu

Wolfram Research (2007), MinimalPolynomial, Wolfram Language function, https://reference.wolfram.com/language/ref/MinimalPolynomial.html (updated 2023).
Text
Wolfram Research (2007), MinimalPolynomial, Wolfram Language function, https://reference.wolfram.com/language/ref/MinimalPolynomial.html (updated 2023).
Wolfram Research (2007), MinimalPolynomial, Wolfram Language function, https://reference.wolfram.com/language/ref/MinimalPolynomial.html (updated 2023).
CMS
Wolfram Language. 2007. "MinimalPolynomial." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2023. https://reference.wolfram.com/language/ref/MinimalPolynomial.html.
Wolfram Language. 2007. "MinimalPolynomial." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2023. https://reference.wolfram.com/language/ref/MinimalPolynomial.html.
APA
Wolfram Language. (2007). MinimalPolynomial. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/MinimalPolynomial.html
Wolfram Language. (2007). MinimalPolynomial. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/MinimalPolynomial.html
BibTeX
@misc{reference.wolfram_2025_minimalpolynomial, author="Wolfram Research", title="{MinimalPolynomial}", year="2023", howpublished="\url{https://reference.wolfram.com/language/ref/MinimalPolynomial.html}", note=[Accessed: 06-April-2025
]}
BibLaTeX
@online{reference.wolfram_2025_minimalpolynomial, organization={Wolfram Research}, title={MinimalPolynomial}, year={2023}, url={https://reference.wolfram.com/language/ref/MinimalPolynomial.html}, note=[Accessed: 06-April-2025
]}