MomentGeneratingFunction
✖
MomentGeneratingFunction
gives the moment-generating function for the distribution dist as a function of the variable t.
gives the moment-generating function for the multivariate distribution dist as a function of the variables t1, t2, … .
Details

- MomentGeneratingFunction is also called a raw moment-generating function.
- MomentGeneratingFunction[dist,t] is equivalent to Expectation[Exp[t x],xdist].
- MomentGeneratingFunction[dist, {t1,t2,…}] is equivalent to Expectation[Exp[t.x],xdist] for vectors t and x.
- The i
moment can be extracted from a moment-generating function mgf through SeriesCoefficient[mgf,{t,0,i}]i!.
Examples
open allclose allBasic Examples (3)Summary of the most common use cases
Compute the moment-generating function (mgf) for a continuous univariate distribution:

https://wolfram.com/xid/0cprjjr8m76xzm-jadjlh

The mgf for a univariate discrete distribution:

https://wolfram.com/xid/0cprjjr8m76xzm-gsgux3

The mgf for a multivariate distribution:

https://wolfram.com/xid/0cprjjr8m76xzm-c22tur

Scope (5)Survey of the scope of standard use cases
Compute the moment-generating function (mgf) for a formula distribution:

https://wolfram.com/xid/0cprjjr8m76xzm-dpdnhx

Find the mgf for a function of a random variate:

https://wolfram.com/xid/0cprjjr8m76xzm-5p9gg

Find the mgf for a data distribution:

https://wolfram.com/xid/0cprjjr8m76xzm-gj1haf


https://wolfram.com/xid/0cprjjr8m76xzm-o667i

Compute the mgf for a censored distribution:

https://wolfram.com/xid/0cprjjr8m76xzm-hznr

Find the mgf for the slice distribution of a random process:

https://wolfram.com/xid/0cprjjr8m76xzm-hha5jz

Applications (3)Sample problems that can be solved with this function
Find the moment-generating function of the sum of random variates:

https://wolfram.com/xid/0cprjjr8m76xzm-lfhsat

Check that it is equal to the product of generating functions:

https://wolfram.com/xid/0cprjjr8m76xzm-les66n

When it coincides with the mgf of BinomialDistribution:

https://wolfram.com/xid/0cprjjr8m76xzm-dr447n

Confirm with TransformedDistribution:

https://wolfram.com/xid/0cprjjr8m76xzm-k32c8

Reconstruct the PDF of a positive real random variate from its moment-generating function:

https://wolfram.com/xid/0cprjjr8m76xzm-hf7fvr

https://wolfram.com/xid/0cprjjr8m76xzm-cew0f


https://wolfram.com/xid/0cprjjr8m76xzm-df39n5

Illustrate the central limit theorem on the example of PoissonDistribution:

https://wolfram.com/xid/0cprjjr8m76xzm-6p42
Find the moment-generating function for the standardized random variate:

https://wolfram.com/xid/0cprjjr8m76xzm-divtde

Find the moment-generating function for the sum of standardized random variates rescaled by
:

https://wolfram.com/xid/0cprjjr8m76xzm-bpqcbx


https://wolfram.com/xid/0cprjjr8m76xzm-ggbzom

Compare with the moment-generating function of a standard normal distribution:

https://wolfram.com/xid/0cprjjr8m76xzm-h6yp8

Properties & Relations (5)Properties of the function, and connections to other functions
MomentGeneratingFunction is equivalent to Expectation of :

https://wolfram.com/xid/0cprjjr8m76xzm-dxjpgc


https://wolfram.com/xid/0cprjjr8m76xzm-bto8oy


https://wolfram.com/xid/0cprjjr8m76xzm-6ben4b

MomentGeneratingFunction is an exponential generating function for the sequence of moments:

https://wolfram.com/xid/0cprjjr8m76xzm-ep1jwd


https://wolfram.com/xid/0cprjjr8m76xzm-e8ssdk


https://wolfram.com/xid/0cprjjr8m76xzm-ipi3bn

Use SeriesCoefficient to find moment :

https://wolfram.com/xid/0cprjjr8m76xzm-dcq08u

Use Moment directly:

https://wolfram.com/xid/0cprjjr8m76xzm-pifvvp


https://wolfram.com/xid/0cprjjr8m76xzm-pyvump

MomentGeneratingFunction is a LaplaceTransform for positive random variables:

https://wolfram.com/xid/0cprjjr8m76xzm-g58jmc


https://wolfram.com/xid/0cprjjr8m76xzm-dngxfc


https://wolfram.com/xid/0cprjjr8m76xzm-4oo5f9

MomentGeneratingFunction is a ZTransform for discrete positive random variates:

https://wolfram.com/xid/0cprjjr8m76xzm-d7tbia


https://wolfram.com/xid/0cprjjr8m76xzm-ptor8


https://wolfram.com/xid/0cprjjr8m76xzm-0t1fos

Possible Issues (2)Common pitfalls and unexpected behavior
For some distributions with long tails, moments of only several low orders are defined:

https://wolfram.com/xid/0cprjjr8m76xzm-cqpy04

Correspondingly, MomentGeneratingFunction is undefined:

https://wolfram.com/xid/0cprjjr8m76xzm-dv1sm4

Analytic continuation of CharacteristicFunction can sometimes be defined:

https://wolfram.com/xid/0cprjjr8m76xzm-hepruo

MomentGeneratingFunction is not always known in closed form:

https://wolfram.com/xid/0cprjjr8m76xzm-b2h9gq

Use Moment to evaluate particular moments:

https://wolfram.com/xid/0cprjjr8m76xzm-b6lvfl

Neat Examples (1)Surprising or curious use cases

https://wolfram.com/xid/0cprjjr8m76xzm-xhy7g

https://wolfram.com/xid/0cprjjr8m76xzm-iiy93r

Wolfram Research (2010), MomentGeneratingFunction, Wolfram Language function, https://reference.wolfram.com/language/ref/MomentGeneratingFunction.html.
Text
Wolfram Research (2010), MomentGeneratingFunction, Wolfram Language function, https://reference.wolfram.com/language/ref/MomentGeneratingFunction.html.
Wolfram Research (2010), MomentGeneratingFunction, Wolfram Language function, https://reference.wolfram.com/language/ref/MomentGeneratingFunction.html.
CMS
Wolfram Language. 2010. "MomentGeneratingFunction." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/MomentGeneratingFunction.html.
Wolfram Language. 2010. "MomentGeneratingFunction." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/MomentGeneratingFunction.html.
APA
Wolfram Language. (2010). MomentGeneratingFunction. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/MomentGeneratingFunction.html
Wolfram Language. (2010). MomentGeneratingFunction. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/MomentGeneratingFunction.html
BibTeX
@misc{reference.wolfram_2025_momentgeneratingfunction, author="Wolfram Research", title="{MomentGeneratingFunction}", year="2010", howpublished="\url{https://reference.wolfram.com/language/ref/MomentGeneratingFunction.html}", note=[Accessed: 01-April-2025
]}
BibLaTeX
@online{reference.wolfram_2025_momentgeneratingfunction, organization={Wolfram Research}, title={MomentGeneratingFunction}, year={2010}, url={https://reference.wolfram.com/language/ref/MomentGeneratingFunction.html}, note=[Accessed: 01-April-2025
]}