WOLFRAM

gives the moment-generating function for the distribution dist as a function of the variable t.

MomentGeneratingFunction[dist,{t1,t2,}]

gives the moment-generating function for the multivariate distribution dist as a function of the variables t1, t2, .

Details

Examples

open allclose all

Basic Examples  (3)Summary of the most common use cases

Compute the moment-generating function (mgf) for a continuous univariate distribution:

Out[1]=1

The mgf for a univariate discrete distribution:

Out[1]=1

The mgf for a multivariate distribution:

Out[1]=1

Scope  (5)Survey of the scope of standard use cases

Compute the moment-generating function (mgf) for a formula distribution:

Out[1]=1

Find the mgf for a function of a random variate:

Out[1]=1

Find the mgf for a data distribution:

Out[1]=1
Out[2]=2

Compute the mgf for a censored distribution:

Out[1]=1

Find the mgf for the slice distribution of a random process:

Out[1]=1

Applications  (3)Sample problems that can be solved with this function

Find the moment-generating function of the sum of random variates:

Out[1]=1

Check that it is equal to the product of generating functions:

Out[2]=2

When it coincides with the mgf of BinomialDistribution:

Out[3]=3

Confirm with TransformedDistribution:

Out[4]=4

Reconstruct the PDF of a positive real random variate from its moment-generating function:

Out[2]=2

Check the result:

Out[3]=3

Illustrate the central limit theorem on the example of PoissonDistribution:

Find the moment-generating function for the standardized random variate:

Out[2]=2

Find the moment-generating function for the sum of standardized random variates rescaled by :

Out[3]=3

Find the large limit:

Out[4]=4

Compare with the moment-generating function of a standard normal distribution:

Out[5]=5

Properties & Relations  (5)Properties of the function, and connections to other functions

MomentGeneratingFunction is equivalent to Expectation of :

Out[1]=1
Out[2]=2
Out[3]=3

MomentGeneratingFunction is an exponential generating function for the sequence of moments:

Out[1]=1
Out[2]=2
Out[3]=3

Use SeriesCoefficient to find moment :

Out[1]=1

Use Moment directly:

Out[2]=2
Out[3]=3

MomentGeneratingFunction is a LaplaceTransform for positive random variables:

Out[1]=1
Out[2]=2
Out[3]=3

MomentGeneratingFunction is a ZTransform for discrete positive random variates:

Out[1]=1
Out[2]=2
Out[3]=3

Possible Issues  (2)Common pitfalls and unexpected behavior

For some distributions with long tails, moments of only several low orders are defined:

Out[1]=1

Correspondingly, MomentGeneratingFunction is undefined:

Out[2]=2

Analytic continuation of CharacteristicFunction can sometimes be defined:

Out[3]=3

MomentGeneratingFunction is not always known in closed form:

Out[1]=1

Use Moment to evaluate particular moments:

Out[2]=2

Neat Examples  (1)Surprising or curious use cases

Out[1]=1
Wolfram Research (2010), MomentGeneratingFunction, Wolfram Language function, https://reference.wolfram.com/language/ref/MomentGeneratingFunction.html.
Wolfram Research (2010), MomentGeneratingFunction, Wolfram Language function, https://reference.wolfram.com/language/ref/MomentGeneratingFunction.html.

Text

Wolfram Research (2010), MomentGeneratingFunction, Wolfram Language function, https://reference.wolfram.com/language/ref/MomentGeneratingFunction.html.

Wolfram Research (2010), MomentGeneratingFunction, Wolfram Language function, https://reference.wolfram.com/language/ref/MomentGeneratingFunction.html.

CMS

Wolfram Language. 2010. "MomentGeneratingFunction." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/MomentGeneratingFunction.html.

Wolfram Language. 2010. "MomentGeneratingFunction." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/MomentGeneratingFunction.html.

APA

Wolfram Language. (2010). MomentGeneratingFunction. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/MomentGeneratingFunction.html

Wolfram Language. (2010). MomentGeneratingFunction. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/MomentGeneratingFunction.html

BibTeX

@misc{reference.wolfram_2025_momentgeneratingfunction, author="Wolfram Research", title="{MomentGeneratingFunction}", year="2010", howpublished="\url{https://reference.wolfram.com/language/ref/MomentGeneratingFunction.html}", note=[Accessed: 01-April-2025 ]}

@misc{reference.wolfram_2025_momentgeneratingfunction, author="Wolfram Research", title="{MomentGeneratingFunction}", year="2010", howpublished="\url{https://reference.wolfram.com/language/ref/MomentGeneratingFunction.html}", note=[Accessed: 01-April-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_momentgeneratingfunction, organization={Wolfram Research}, title={MomentGeneratingFunction}, year={2010}, url={https://reference.wolfram.com/language/ref/MomentGeneratingFunction.html}, note=[Accessed: 01-April-2025 ]}

@online{reference.wolfram_2025_momentgeneratingfunction, organization={Wolfram Research}, title={MomentGeneratingFunction}, year={2010}, url={https://reference.wolfram.com/language/ref/MomentGeneratingFunction.html}, note=[Accessed: 01-April-2025 ]}