Combinatorica`
Combinatorica`

ConnectedQ

As of Version 10, most of the functionality of the Combinatorica package is built into the Wolfram System. »

ConnectedQ[g]

yields True if undirected graph g is connected. If g is directed, the function returns True if the underlying undirected graph is connected.

ConnectedQ[g,Strong]

yields True if the directed graph g is strongly connected.

ConnectedQ[g,Weak]

yields True if the directed graph g is weakly connected.

更多信息和选项

范例

基本范例  (2)

ConnectedQ has been superseded by ConnectedGraphQ:

Wolfram Research (2012),ConnectedQ,Wolfram 语言函数,https://reference.wolfram.com/language/Combinatorica/ref/ConnectedQ.html.

文本

Wolfram Research (2012),ConnectedQ,Wolfram 语言函数,https://reference.wolfram.com/language/Combinatorica/ref/ConnectedQ.html.

CMS

Wolfram 语言. 2012. "ConnectedQ." Wolfram 语言与系统参考资料中心. Wolfram Research. https://reference.wolfram.com/language/Combinatorica/ref/ConnectedQ.html.

APA

Wolfram 语言. (2012). ConnectedQ. Wolfram 语言与系统参考资料中心. 追溯自 https://reference.wolfram.com/language/Combinatorica/ref/ConnectedQ.html 年

BibTeX

@misc{reference.wolfram_2024_connectedq, author="Wolfram Research", title="{ConnectedQ}", year="2012", howpublished="\url{https://reference.wolfram.com/language/Combinatorica/ref/ConnectedQ.html}", note=[Accessed: 22-December-2024 ]}

BibLaTeX

@online{reference.wolfram_2024_connectedq, organization={Wolfram Research}, title={ConnectedQ}, year={2012}, url={https://reference.wolfram.com/language/Combinatorica/ref/ConnectedQ.html}, note=[Accessed: 22-December-2024 ]}