Combinatorica`
Combinatorica`

ConnectedQ

As of Version 10, most of the functionality of the Combinatorica package is built into the Wolfram System. »

ConnectedQ[g]

yields True if undirected graph g is connected. If g is directed, the function returns True if the underlying undirected graph is connected.

ConnectedQ[g,Strong]

yields True if the directed graph g is strongly connected.

ConnectedQ[g,Weak]

yields True if the directed graph g is weakly connected.

Details

Examples

Basic Examples  (2)

ConnectedQ has been superseded by ConnectedGraphQ:

Wolfram Research (2012), ConnectedQ, Wolfram Language function, https://reference.wolfram.com/language/Combinatorica/ref/ConnectedQ.html.

Text

Wolfram Research (2012), ConnectedQ, Wolfram Language function, https://reference.wolfram.com/language/Combinatorica/ref/ConnectedQ.html.

BibTeX

@misc{reference.wolfram_2021_connectedq, author="Wolfram Research", title="{ConnectedQ}", year="2012", howpublished="\url{https://reference.wolfram.com/language/Combinatorica/ref/ConnectedQ.html}", note=[Accessed: 27-September-2021 ]}

BibLaTeX

@online{reference.wolfram_2021_connectedq, organization={Wolfram Research}, title={ConnectedQ}, year={2012}, url={https://reference.wolfram.com/language/Combinatorica/ref/ConnectedQ.html}, note=[Accessed: 27-September-2021 ]}

CMS

Wolfram Language. 2012. "ConnectedQ." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/Combinatorica/ref/ConnectedQ.html.

APA

Wolfram Language. (2012). ConnectedQ. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/Combinatorica/ref/ConnectedQ.html