Combinatorica`
Combinatorica`

MaximumAntichain

As of Version 10, most of the functionality of the Combinatorica package is built into the Wolfram System. »

MaximumAntichain[g]

gives a largest set of unrelated vertices in partial order g.

Details

Wolfram Research (2012), MaximumAntichain, Wolfram Language function, https://reference.wolfram.com/language/Combinatorica/ref/MaximumAntichain.html.

Text

Wolfram Research (2012), MaximumAntichain, Wolfram Language function, https://reference.wolfram.com/language/Combinatorica/ref/MaximumAntichain.html.

BibTeX

@misc{reference.wolfram_2021_maximumantichain, author="Wolfram Research", title="{MaximumAntichain}", year="2012", howpublished="\url{https://reference.wolfram.com/language/Combinatorica/ref/MaximumAntichain.html}", note=[Accessed: 30-November-2021 ]}

BibLaTeX

@online{reference.wolfram_2021_maximumantichain, organization={Wolfram Research}, title={MaximumAntichain}, year={2012}, url={https://reference.wolfram.com/language/Combinatorica/ref/MaximumAntichain.html}, note=[Accessed: 30-November-2021 ]}

CMS

Wolfram Language. 2012. "MaximumAntichain." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/Combinatorica/ref/MaximumAntichain.html.

APA

Wolfram Language. (2012). MaximumAntichain. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/Combinatorica/ref/MaximumAntichain.html