Combinatorica`
Combinatorica`

NumberOfSpanningTrees

As of Version 10, most of the functionality of the Combinatorica package is built into the Wolfram System. »

NumberOfSpanningTrees[g]

gives the number of labeled spanning trees of graph g.

Details

Wolfram Research (2012), NumberOfSpanningTrees, Wolfram Language function, https://reference.wolfram.com/language/Combinatorica/ref/NumberOfSpanningTrees.html.

Text

Wolfram Research (2012), NumberOfSpanningTrees, Wolfram Language function, https://reference.wolfram.com/language/Combinatorica/ref/NumberOfSpanningTrees.html.

BibTeX

@misc{reference.wolfram_2021_numberofspanningtrees, author="Wolfram Research", title="{NumberOfSpanningTrees}", year="2012", howpublished="\url{https://reference.wolfram.com/language/Combinatorica/ref/NumberOfSpanningTrees.html}", note=[Accessed: 16-September-2021 ]}

BibLaTeX

@online{reference.wolfram_2021_numberofspanningtrees, organization={Wolfram Research}, title={NumberOfSpanningTrees}, year={2012}, url={https://reference.wolfram.com/language/Combinatorica/ref/NumberOfSpanningTrees.html}, note=[Accessed: 16-September-2021 ]}

CMS

Wolfram Language. 2012. "NumberOfSpanningTrees." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/Combinatorica/ref/NumberOfSpanningTrees.html.

APA

Wolfram Language. (2012). NumberOfSpanningTrees. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/Combinatorica/ref/NumberOfSpanningTrees.html