Combinatorica`
Combinatorica`

PerfectQ

As of Version 10, most of the functionality of the Combinatorica package is built into the Wolfram System. »

PerfectQ[g]

yields True if g is a perfect graph, meaning that for every induced subgraph of g, the size of a largest clique equals the chromatic number.

Details

Wolfram Research (2012), PerfectQ, Wolfram Language function, https://reference.wolfram.com/language/Combinatorica/ref/PerfectQ.html.

Text

Wolfram Research (2012), PerfectQ, Wolfram Language function, https://reference.wolfram.com/language/Combinatorica/ref/PerfectQ.html.

BibTeX

@misc{reference.wolfram_2021_perfectq, author="Wolfram Research", title="{PerfectQ}", year="2012", howpublished="\url{https://reference.wolfram.com/language/Combinatorica/ref/PerfectQ.html}", note=[Accessed: 16-September-2021 ]}

BibLaTeX

@online{reference.wolfram_2021_perfectq, organization={Wolfram Research}, title={PerfectQ}, year={2012}, url={https://reference.wolfram.com/language/Combinatorica/ref/PerfectQ.html}, note=[Accessed: 16-September-2021 ]}

CMS

Wolfram Language. 2012. "PerfectQ." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/Combinatorica/ref/PerfectQ.html.

APA

Wolfram Language. (2012). PerfectQ. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/Combinatorica/ref/PerfectQ.html