Upgrading from:

VectorFieldPlots`

As of Version 7, the Vector Field Plotting Package has been integrated into the Wolfram System.

New system functions

VectorFieldPlot is now available as the built-in Mathematica function VectorPlot:

Version 6.0 << VectorFieldPlots`;
VectorFieldPlot[{Sin[x], Cos[y]}, {x, 0, 2 Pi}, {y, 0, 2 Pi}]

VectorFieldPlot3D is now available as the built-in Mathematica function VectorPlot3D:

Version 6.0 << VectorFieldPlots`;
VectorFieldPlot3D[{x, y, z}, {x, 0, 1}, {y, 0, 1}, {z, 0, 1}]

The VectorHeads option has been superseded by the VectorStyle option to VectorPlot3D:

Version 6.0 << VectorFieldPlots`;
VectorFieldPlot3D[{x, y, z}, {x, 0, 1}, {y, 0, 1}, {z, 0, 1}, 
 VectorHeads -> False]

The ColorFunction option to VectorFieldPlot and VectorFieldPlot3D has been superseded by the new VectorColorFunction option:

Version 6.0 << VectorFieldPlots`;
VectorFieldPlot[{Sin[x], Cos[y]}, {x, 0, 2 Pi}, {y, 0, 2 Pi}, 
 ColorFunction -> Hue]

Use the VectorPoints option to increase the number of evaluation points in the plot:

Version 6.0 << VectorFieldPlots`;
VectorFieldPlot[{Sin[x], Cos[y]}, {x, 0, 2 Pi}, {y, 0, 2 Pi}, 
 PlotPoints -> 20]

GradientFieldPlot, GradientFieldPlot3D, HamiltonianFieldPlot, and PolyaFieldPlot can be replaced using the following definitions:

Version 6.0 << VectorFieldPlots`;
GradientFieldPlot[Sin[x y], {x, 0, 1}, {y, 0, 1}]
Version 6.0 << VectorFieldPlots`;
GradientFieldPlot3D[x^2 + y^2 - z^2, {x, 0, 1}, {y, 0, 1}, {z, 0, 1}]
Version 6.0 << VectorFieldPlots`;
HamiltonianFieldPlot[Sin[x y], {x, 0, 2 \[Pi]}, {y, 0, 2 \[Pi]}]
Version 6.0 << VectorFieldPlots`;
PolyaFieldPlot[Sin[x + I*y], {x, -1, 1}, {y, -1, 1}]