ConvexHullMedian[{{x1,y1},…,{xn,yn}}]
estimates the median to be the mean of the bivariate data points lying on the innermost layer of the convex layers of the data.


ConvexHullMedian
ConvexHullMedian[{{x1,y1},…,{xn,yn}}]
estimates the median to be the mean of the bivariate data points lying on the innermost layer of the convex layers of the data.
Details and Options
- To use ConvexHullMedian, you first need to load the Computational Geometry Package using Needs["ComputationalGeometry`"].
- ConvexHullMedian repeatedly removes the convex hull from the data until three or fewer data points remain.
- The option EstimateDOF->True may be used to include the number of points lying on the innermost convex layer. The default setting is False.
See Also
Text
Wolfram Research (2012), ConvexHullMedian, Wolfram Language function, https://reference.wolfram.com/language/ComputationalGeometry/ref/ConvexHullMedian.html.
CMS
Wolfram Language. 2012. "ConvexHullMedian." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ComputationalGeometry/ref/ConvexHullMedian.html.
APA
Wolfram Language. (2012). ConvexHullMedian. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ComputationalGeometry/ref/ConvexHullMedian.html
BibTeX
@misc{reference.wolfram_2025_convexhullmedian, author="Wolfram Research", title="{ConvexHullMedian}", year="2012", howpublished="\url{https://reference.wolfram.com/language/ComputationalGeometry/ref/ConvexHullMedian.html}", note=[Accessed: 10-August-2025]}
BibLaTeX
@online{reference.wolfram_2025_convexhullmedian, organization={Wolfram Research}, title={ConvexHullMedian}, year={2012}, url={https://reference.wolfram.com/language/ComputationalGeometry/ref/ConvexHullMedian.html}, note=[Accessed: 10-August-2025]}