FourierSeries`
FourierSeries`

DTFourierTransform

As of Version 7.0, DTFourierTransform has been renamed to FourierSequenceTransform and is part of the built-in Wolfram Language kernel.

DTFourierTransform[expr,n,ω]

gives the discrete time Fourier transform of expr as a function of ω, where expr is a function of n.

Details and Options

  • To use DTFourierTransform, you first need to load the Fourier Series Package using Needs["FourierSeries`"].
  • The discrete time Fourier transform of expr is by default defined to be expr 2πω.
  • DTFourierTransform returns a periodic function of ω with default period 1.
  • Different choices for the definition of the discrete time Fourier transform can be specified using the option FourierParameters.
  • With the setting FourierParameters->{a,b}, the discrete time Fourier transform computed by DTFourierTransform is expr 2 πω, a periodic function of ω with a default period of .

Examples

Basic Examples  (1)

Use different definitions for calculating a discrete time Fourier transform:

Compare with the answer from a numerical approximation:

Wolfram Research (2008), DTFourierTransform, Wolfram Language function, https://reference.wolfram.com/language/FourierSeries/ref/DTFourierTransform.html.

Text

Wolfram Research (2008), DTFourierTransform, Wolfram Language function, https://reference.wolfram.com/language/FourierSeries/ref/DTFourierTransform.html.

CMS

Wolfram Language. 2008. "DTFourierTransform." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/FourierSeries/ref/DTFourierTransform.html.

APA

Wolfram Language. (2008). DTFourierTransform. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/FourierSeries/ref/DTFourierTransform.html

BibTeX

@misc{reference.wolfram_2024_dtfouriertransform, author="Wolfram Research", title="{DTFourierTransform}", year="2008", howpublished="\url{https://reference.wolfram.com/language/FourierSeries/ref/DTFourierTransform.html}", note=[Accessed: 26-December-2024 ]}

BibLaTeX

@online{reference.wolfram_2024_dtfouriertransform, organization={Wolfram Research}, title={DTFourierTransform}, year={2008}, url={https://reference.wolfram.com/language/FourierSeries/ref/DTFourierTransform.html}, note=[Accessed: 26-December-2024 ]}