FourierSeries`
FourierSeries`

FourierCoefficient

As of Version 7.0, FourierCoefficient is part of the built-in Wolfram Language kernel.

FourierCoefficient[expr,t,n]

gives the n^(th) coefficient in the Fourier exponential series expansion of expr, where expr is a periodic function of t with period 1.

更多信息和选项

  • To use FourierCoefficient, you first need to load the Fourier Series Package using Needs["FourierSeries`"].
  • The n^(th) coefficient in the Fourier exponential series expansion of expr is by default defined to be Integrate[expr 2πnt,{t,-,}].
  • If n is numeric, it should be an explicit integer.
  • Different choices for the definition of the Fourier exponential series expansion can be specified using the option FourierParameters.
  • With the setting FourierParameters->{a,b}, expr is assumed to have a period of , and the n^(th) coefficient computed by FourierCoefficient is Integrate[expr 2 πbnt,{t,-,}].
  • In addition to the option FourierParameters, FourierCoefficient can also accept the options available to Integrate. These options are passed directly to Integrate.

范例

基本范例  (1)

Use different definitions for calculating a coefficient in a Fourier series:

Compare with the answer from a numerical approximation:

Wolfram Research (2008),FourierCoefficient,Wolfram 语言函数,https://reference.wolfram.com/language/FourierSeries/ref/FourierCoefficient.html.

文本

Wolfram Research (2008),FourierCoefficient,Wolfram 语言函数,https://reference.wolfram.com/language/FourierSeries/ref/FourierCoefficient.html.

CMS

Wolfram 语言. 2008. "FourierCoefficient." Wolfram 语言与系统参考资料中心. Wolfram Research. https://reference.wolfram.com/language/FourierSeries/ref/FourierCoefficient.html.

APA

Wolfram 语言. (2008). FourierCoefficient. Wolfram 语言与系统参考资料中心. 追溯自 https://reference.wolfram.com/language/FourierSeries/ref/FourierCoefficient.html 年

BibTeX

@misc{reference.wolfram_2024_fouriercoefficient, author="Wolfram Research", title="{FourierCoefficient}", year="2008", howpublished="\url{https://reference.wolfram.com/language/FourierSeries/ref/FourierCoefficient.html}", note=[Accessed: 14-November-2024 ]}

BibLaTeX

@online{reference.wolfram_2024_fouriercoefficient, organization={Wolfram Research}, title={FourierCoefficient}, year={2008}, url={https://reference.wolfram.com/language/FourierSeries/ref/FourierCoefficient.html}, note=[Accessed: 14-November-2024 ]}