FourierSeries`
FourierSeries`

FourierSeries

As of Version 7.0, FourierSeries is part of the built-in Wolfram System kernel.

FourierSeries[expr,t,n]

gives the order n Fourier exponential series expansion of expr, where expr is a periodic function of t with period 1.

Details and Options

  • To use FourierSeries, you first need to load the Fourier Series Package using Needs["FourierSeries`"].
  • The order n Fourier exponential series expansion of expr is by default defined to be Fk2πkt, where Fk is given by Integrate[expr 2πkt,{t,-,}].
  • Different choices for the period of expr can be specified using the option FourierParameters.
  • With the setting FourierParameters->{a,b}, expr is assumed to have a period of , and the order n Fourier exponential series expansion computed by FourierSeries is Fk2πkt, where Fk is given by bIntegrate[expr 2πbkt,{t,-,}].
  • In addition to the option FourierParameters, FourierSeries can also accept the options available to Integrate. These options are passed directly to Integrate.

Examples

Basic Examples  (1)

Compute the exponential Fourier series for a periodic function with period 1:

Compare with a plot of the original function:

Wolfram Research (2008), FourierSeries, Wolfram Language function, https://reference.wolfram.com/language/FourierSeries/ref/FourierSeries.html.

Text

Wolfram Research (2008), FourierSeries, Wolfram Language function, https://reference.wolfram.com/language/FourierSeries/ref/FourierSeries.html.

CMS

Wolfram Language. 2008. "FourierSeries." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/FourierSeries/ref/FourierSeries.html.

APA

Wolfram Language. (2008). FourierSeries. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/FourierSeries/ref/FourierSeries.html

BibTeX

@misc{reference.wolfram_2025_fourierseries, author="Wolfram Research", title="{FourierSeries}", year="2008", howpublished="\url{https://reference.wolfram.com/language/FourierSeries/ref/FourierSeries.html}", note=[Accessed: 27-March-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_fourierseries, organization={Wolfram Research}, title={FourierSeries}, year={2008}, url={https://reference.wolfram.com/language/FourierSeries/ref/FourierSeries.html}, note=[Accessed: 27-March-2025 ]}