FourierSeries`
FourierSeries`
FourierSinCoefficient
As of Version 7.0, FourierSinCoefficient is part of the built-in Wolfram Language kernel.
FourierSinCoefficient[expr,t,n]
gives the n coefficient in the Fourier sine series expansion of expr, where expr is a periodic function of t with period 1.
Details and Options
- To use FourierSinCoefficient, you first need to load the Fourier Series Package using Needs["FourierSeries`"].
- The n coefficient in the Fourier sine series expansion of expr is by default defined to be 2Integrate[expr Sin[2π n t],{t,-,}].
- If n is numeric, it should be an explicit integer.
- Different choices for the definition of the Fourier sine series expansion can be specified using the option FourierParameters.
- With the setting FourierParameters->{a,b}, expr is assumed to have a period of , and the n coefficient computed by FourierSinCoefficient is 2 Integrate[expr Sin[2π b n t],{t,-,}].
- In addition to the option FourierParameters, FourierSinCoefficient can also accept the options available to Integrate. These options are passed directly to Integrate.
Examples
Wolfram Research (2008), FourierSinCoefficient, Wolfram Language function, https://reference.wolfram.com/language/FourierSeries/ref/FourierSinCoefficient.html.
Text
Wolfram Research (2008), FourierSinCoefficient, Wolfram Language function, https://reference.wolfram.com/language/FourierSeries/ref/FourierSinCoefficient.html.
CMS
Wolfram Language. 2008. "FourierSinCoefficient." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/FourierSeries/ref/FourierSinCoefficient.html.
APA
Wolfram Language. (2008). FourierSinCoefficient. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/FourierSeries/ref/FourierSinCoefficient.html