FourierSeries`
FourierSeries`
InverseDTFourierTransform
As of Version 7.0, InverseDTFourierTransform has been renamed to InverseFourierSequenceTransform and is part of the built-in Wolfram Language kernel.
InverseDTFourierTransform[expr,ω,n]
gives the inverse discrete time Fourier transform of expr, where expr is a periodic function of ω with period 1.
Details and Options
- To use InverseDTFourierTransform, you first need to load the Fourier Series Package using Needs["FourierSeries`"].
- The inverse discrete time Fourier transform of expr is by default defined to be Integrate[expr -2πnω,{ω,-,}].
- If n is numeric, it should be an explicit integer.
- Different choices for the definition of the inverse discrete time Fourier transform can be specified using the option FourierParameters.
- With the setting FourierParameters->{a,b}, expr is assumed to have a period of , and the inverse discrete time Fourier transform computed by InverseDTFourierTransform is Integrate[expr -2πω,{ω,-,}].
- In addition to the option FourierParameters, InverseDTFourierTransform can also accept the options available to Integrate. These options are passed directly to Integrate.
Examples
Wolfram Research (2008), InverseDTFourierTransform, Wolfram Language function, https://reference.wolfram.com/language/FourierSeries/ref/InverseDTFourierTransform.html.
Text
Wolfram Research (2008), InverseDTFourierTransform, Wolfram Language function, https://reference.wolfram.com/language/FourierSeries/ref/InverseDTFourierTransform.html.
CMS
Wolfram Language. 2008. "InverseDTFourierTransform." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/FourierSeries/ref/InverseDTFourierTransform.html.
APA
Wolfram Language. (2008). InverseDTFourierTransform. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/FourierSeries/ref/InverseDTFourierTransform.html