InverseFourierSequenceTransform
InverseFourierSequenceTransform[expr,ω,n]
gives the inverse discrete-time Fourier transform of expr.
InverseFourierSequenceTransform[expr,{ω1,ω2,…},{n1,n2,…}]
gives the multidimensional inverse Fourier sequence transform.
Details and Options
- The inverse Fourier sequence transform of is by default defined to be .
- The –dimensional inverse transform is given by .
- In the form InverseFourierSequenceTransform[expr,t,n], n can be symbolic or an integer.
- The following options can be given:
-
Assumptions $Assumptions assumptions on parameters FourierParameters {1,1} parameters to define transform GenerateConditions False whether to generate results that involve conditions on parameters - Common settings for FourierParameters include:
-
{1, 1} default settings {1,-2Pi} period 1 {a,b} general setting
Examples
open allclose allBasic Examples (2)
Scope (3)
Options (2)
FourierParameters (1)
Use a nondefault setting for FourierParameters:
Properties & Relations (6)
InverseFourierSequenceTransform is defined by an integral:
InverseFourierSequenceTransform and FourierSequenceTransform are inverses:
InverseFourierSequenceTransform is closely related to InverseZTransform:
Just as InverseFourierTransform is closely related to InverseLaplaceTransform:
InverseFourierSequenceTransform is the same as FourierCoefficient:
Inverse discrete-time Fourier transform for basis exponentials:
InverseFourierSequenceTransform is closely related to InverseBilateralZTransform:
Text
Wolfram Research (2008), InverseFourierSequenceTransform, Wolfram Language function, https://reference.wolfram.com/language/ref/InverseFourierSequenceTransform.html.
CMS
Wolfram Language. 2008. "InverseFourierSequenceTransform." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/InverseFourierSequenceTransform.html.
APA
Wolfram Language. (2008). InverseFourierSequenceTransform. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/InverseFourierSequenceTransform.html