InverseZTransform

InverseZTransform[expr,z,n]

gives the inverse Z transform of expr.

InverseZTransform[expr,{z1,,zm},{n1,,nm}]

gives the multiple inverse Z transform of expr.

Details and Options

Examples

open allclose all

Basic Examples  (2)

Univariate inverse transforms:

Multivariate inverse transforms:

Scope  (4)

Constants lead to impulse sequences:

Shifted impulse sequence:

Rational transforms yield exponential and trigonometric sequences:

In some cases, additional simplification and transformations are needed:

Elementary functions:

Special functions:

Options  (1)

Assumptions  (1)

This transform will not evaluate without any constraints on the range of p:

Use Assumptions to limit the range of p:

Applications  (3)

Solve a linear difference equation:

Add an initial value equation and solve the algebraic equation for the transform:

Get the solution through inverse transformation:

Use RSolve:

Solve a linear difference-summation equation:

Use the inverse transform to get a solution to the original problem:

Use RSolve:

A discrete system transfer function:

Impulse response:

Step response:

Ramp response:

Properties & Relations  (6)

Use DiscreteAsymptotic to compute an asymptotic approximation:

ZTransform is the inverse operator:

Linearity:

Shifting:

Derivatives:

Initial value property:

Final value property:

InverseZTransform is closely related to SeriesCoefficient:

Neat Examples  (1)

Inverse transform for a hypergeometric function:

Wolfram Research (1999), InverseZTransform, Wolfram Language function, https://reference.wolfram.com/language/ref/InverseZTransform.html (updated 2008).

Text

Wolfram Research (1999), InverseZTransform, Wolfram Language function, https://reference.wolfram.com/language/ref/InverseZTransform.html (updated 2008).

CMS

Wolfram Language. 1999. "InverseZTransform." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2008. https://reference.wolfram.com/language/ref/InverseZTransform.html.

APA

Wolfram Language. (1999). InverseZTransform. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/InverseZTransform.html

BibTeX

@misc{reference.wolfram_2024_inverseztransform, author="Wolfram Research", title="{InverseZTransform}", year="2008", howpublished="\url{https://reference.wolfram.com/language/ref/InverseZTransform.html}", note=[Accessed: 20-January-2025 ]}

BibLaTeX

@online{reference.wolfram_2024_inverseztransform, organization={Wolfram Research}, title={InverseZTransform}, year={2008}, url={https://reference.wolfram.com/language/ref/InverseZTransform.html}, note=[Accessed: 20-January-2025 ]}