InverseLaplaceTransform
✖
InverseLaplaceTransform
gives the symbolic inverse Laplace transform of F[s] in the variable s as f[t] in the variable t.

gives the numeric inverse Laplace transform at the numerical value .
gives the multidimensional inverse Laplace transform of F[s1,…,sn].
Details and Options


- Laplace transforms are typically used to transform differential and partial differential equations to algebraic equations, solve and then inverse transform back to a solution.
- Laplace transforms are also extensively used in control theory and signal processing as a way to represent and manipulate linear systems in the form of transfer functions and transfer matrices. The Laplace transform and its inverse are then a way to transform between the time domain and frequency domain.
- The inverse Laplace transform of a function
is defined to be
, where γ is an arbitrary positive constant chosen so that the contour of integration lies to the right of all singularities in
.
- The multidimensional inverse Laplace transform of a function
is given by a contour integral of the form
.
- The integral is computed using numerical methods if the third argument
is given a numerical value. The available method settings include "Crump", "Durbin", "Papoulis", "Piessens", "Stehfest", "Talbot" and "Weeks".
- The asymptotic inverse Laplace transform can be computed using Asymptotic.
- The following options can be given:
-
AccuracyGoal Automatic digits of absolute accuracy sought Assumptions $Assumptions assumptions to make about parameters GenerateConditions False whether to generate answers that involve conditions on parameters Method Automatic method to use PerformanceGoal $PerformanceGoal aspects of performance to optimize PrecisionGoal Automatic digits of precision sought WorkingPrecision Automatic the precision used in internal computations - In TraditionalForm, InverseLaplaceTransform is output using ℒ-1. »

Examples
open allclose allBasic Examples (4)Summary of the most common use cases
Compute the inverse Laplace transform of a function:

https://wolfram.com/xid/0fq6i7sjk0ryq-fhff8p

Inverse Laplace transform of a function with parameters:

https://wolfram.com/xid/0fq6i7sjk0ryq-59nrf9


https://wolfram.com/xid/0fq6i7sjk0ryq-yzxytk

Compute a numerical inverse Laplace transform:

https://wolfram.com/xid/0fq6i7sjk0ryq-jbxqa

Inverse Laplace transform of a bivariate function:

https://wolfram.com/xid/0fq6i7sjk0ryq-5bmfp

Scope (56)Survey of the scope of standard use cases
Basic Uses (3)
Compute the inverse Laplace transform of a function for a symbolic parameter t:

https://wolfram.com/xid/0fq6i7sjk0ryq-2gnvu0

Use a numerical value for the parameter:

https://wolfram.com/xid/0fq6i7sjk0ryq-b9em71

TraditionalForm formatting:

https://wolfram.com/xid/0fq6i7sjk0ryq-ne4loa

Rational Functions (5)
Reciprocal of a linear function:

https://wolfram.com/xid/0fq6i7sjk0ryq-c3302p

Reciprocal of a quadratic function:

https://wolfram.com/xid/0fq6i7sjk0ryq-fpzi8h

Functions whose inverses are trigonometric functions:

https://wolfram.com/xid/0fq6i7sjk0ryq-gv2crh


https://wolfram.com/xid/0fq6i7sjk0ryq-yyegq6

Functions whose inverses are hyperbolic functions:

https://wolfram.com/xid/0fq6i7sjk0ryq-4e3btq


https://wolfram.com/xid/0fq6i7sjk0ryq-ybk7wh

More examples of rational functions:

https://wolfram.com/xid/0fq6i7sjk0ryq-y13zg0


https://wolfram.com/xid/0fq6i7sjk0ryq-8otc5n


https://wolfram.com/xid/0fq6i7sjk0ryq-ix1niz

Elementary Functions (5)
Function involving a square root:

https://wolfram.com/xid/0fq6i7sjk0ryq-tgq72d

Function involving exponential and square root functions:

https://wolfram.com/xid/0fq6i7sjk0ryq-p3xbjs


https://wolfram.com/xid/0fq6i7sjk0ryq-l8h6dl


https://wolfram.com/xid/0fq6i7sjk0ryq-1pb22x

Inverse Laplace transform leading to a Bessel function:

https://wolfram.com/xid/0fq6i7sjk0ryq-zlgvxo

Inverse of an arctangent function:

https://wolfram.com/xid/0fq6i7sjk0ryq-xlvn6z

Logarithmic Functions (4)
Inverse Laplace transform of a logarithmic function:

https://wolfram.com/xid/0fq6i7sjk0ryq-tojuvc

Logarithm of a rational function:

https://wolfram.com/xid/0fq6i7sjk0ryq-l6lmlg


https://wolfram.com/xid/0fq6i7sjk0ryq-e77uka

Product of a logarithm and a power function:

https://wolfram.com/xid/0fq6i7sjk0ryq-0v9ub1

Function involving the square of a logarithm:

https://wolfram.com/xid/0fq6i7sjk0ryq-3ulzeu

Special Functions (12)
Function involving BesselK:

https://wolfram.com/xid/0fq6i7sjk0ryq-gef76b

Ratio of an incomplete gamma function and a power function:

https://wolfram.com/xid/0fq6i7sjk0ryq-m98m4k

Inverse of a polygamma function:

https://wolfram.com/xid/0fq6i7sjk0ryq-jdyrkq

Inverse of a function involving an error function:

https://wolfram.com/xid/0fq6i7sjk0ryq-546lno

Error function composed with a square root:

https://wolfram.com/xid/0fq6i7sjk0ryq-cp62kr


https://wolfram.com/xid/0fq6i7sjk0ryq-dm4haw

Inverse transforms of the LegendreP and LegendreQ functions:

https://wolfram.com/xid/0fq6i7sjk0ryq-4q7drp


https://wolfram.com/xid/0fq6i7sjk0ryq-9sif

Complex plots of the Legendre functions:

https://wolfram.com/xid/0fq6i7sjk0ryq-2f1uap


https://wolfram.com/xid/0fq6i7sjk0ryq-8blp9s

ComplexPlot of the frequency-domain function:

https://wolfram.com/xid/0fq6i7sjk0ryq-3owdqg

Product of BesselJ and Gamma functions:

https://wolfram.com/xid/0fq6i7sjk0ryq-utc6l0

ComplexPlot of the frequency-domain function:

https://wolfram.com/xid/0fq6i7sjk0ryq-z3xqx8

Composition of exponential integral and square root functions:

https://wolfram.com/xid/0fq6i7sjk0ryq-bn59ie

Product of two ParabolicCylinderD functions:

https://wolfram.com/xid/0fq6i7sjk0ryq-e9buuu

Inverse transforms involving elliptic integral functions:

https://wolfram.com/xid/0fq6i7sjk0ryq-3x1bf6


https://wolfram.com/xid/0fq6i7sjk0ryq-dd6bxd

Inverse transform of EllipticTheta:

https://wolfram.com/xid/0fq6i7sjk0ryq-0xqfuj

Piecewise Functions (5)
The inverse of the following function is a piecewise function:

https://wolfram.com/xid/0fq6i7sjk0ryq-k1zr0b


https://wolfram.com/xid/0fq6i7sjk0ryq-bowm61

Inverse of an exponential function leading to a box function:

https://wolfram.com/xid/0fq6i7sjk0ryq-05zh33


https://wolfram.com/xid/0fq6i7sjk0ryq-he2cy3

Inverse of an exponential function leading to a piecewise trigonometric function:

https://wolfram.com/xid/0fq6i7sjk0ryq-wzkeeg


https://wolfram.com/xid/0fq6i7sjk0ryq-7aunad

Inverse leading to a staircase function:

https://wolfram.com/xid/0fq6i7sjk0ryq-vtn9ua


https://wolfram.com/xid/0fq6i7sjk0ryq-evupmb


https://wolfram.com/xid/0fq6i7sjk0ryq-igtiwy

More involved staircase function:

https://wolfram.com/xid/0fq6i7sjk0ryq-0khawj


https://wolfram.com/xid/0fq6i7sjk0ryq-el5dfo

https://wolfram.com/xid/0fq6i7sjk0ryq-e8r875

Periodic Functions (4)
The inverse of the following function is periodic with respect to t:

https://wolfram.com/xid/0fq6i7sjk0ryq-fikkiu


https://wolfram.com/xid/0fq6i7sjk0ryq-cat0fz

Plot to verify that the result is a square wave:

https://wolfram.com/xid/0fq6i7sjk0ryq-rnnq44

Function whose inverse is the absolute value of the sine function:

https://wolfram.com/xid/0fq6i7sjk0ryq-8g4xss


https://wolfram.com/xid/0fq6i7sjk0ryq-i8g5ya

Function whose inverse is a trapezoidal wave:

https://wolfram.com/xid/0fq6i7sjk0ryq-2yl25o


https://wolfram.com/xid/0fq6i7sjk0ryq-6b8mvp

A more involved piecewise example:

https://wolfram.com/xid/0fq6i7sjk0ryq-m3bqep


https://wolfram.com/xid/0fq6i7sjk0ryq-qi7ocr

Generalized Functions (3)
Inverse of an exponential function is the Dirac function:

https://wolfram.com/xid/0fq6i7sjk0ryq-450kgg

Inverse of the product of an exponential function and a power of s is a derivative of the Dirac function:

https://wolfram.com/xid/0fq6i7sjk0ryq-l1a9cw

The inverse of the hyperbolic secant is a series of Dirac functions:

https://wolfram.com/xid/0fq6i7sjk0ryq-5329ve


https://wolfram.com/xid/0fq6i7sjk0ryq-un83ts

Multivariate Functions (8)
Inverse Laplace transform of a bivariate rational function:

https://wolfram.com/xid/0fq6i7sjk0ryq-lx4d5z


https://wolfram.com/xid/0fq6i7sjk0ryq-y1c3l4

Rational function that is separable with respect to p and q:

https://wolfram.com/xid/0fq6i7sjk0ryq-wefdfi

Rational function that is not separable with respect to p and q:

https://wolfram.com/xid/0fq6i7sjk0ryq-v2fydh

Rational function whose inverse is related to BesselJ:

https://wolfram.com/xid/0fq6i7sjk0ryq-k7isiq

Inverse Laplace transform of a bivariate function involving a radical:

https://wolfram.com/xid/0fq6i7sjk0ryq-02u034

Inverse Laplace transform of a multivariate function in three variables:

https://wolfram.com/xid/0fq6i7sjk0ryq-zebwoi


https://wolfram.com/xid/0fq6i7sjk0ryq-x9pmtf

Function involving a logarithm:

https://wolfram.com/xid/0fq6i7sjk0ryq-54berv

Numerical Inversion (4)
Calculate the inverse Laplace transform at a single point:

https://wolfram.com/xid/0fq6i7sjk0ryq-wbhl8o

Alternatively, calculate the inverse Laplace transform symbolically:

https://wolfram.com/xid/0fq6i7sjk0ryq-t0h9lt

Then evaluate it for a specific value of t:

https://wolfram.com/xid/0fq6i7sjk0ryq-ud7gdr

Plot the inverse Laplace transform numerically and compare it with the exact result:

https://wolfram.com/xid/0fq6i7sjk0ryq-c9g5v0

https://wolfram.com/xid/0fq6i7sjk0ryq-vhzeg


https://wolfram.com/xid/0fq6i7sjk0ryq-323ht7

Function whose inverse is a piecewise function with respect to t:

https://wolfram.com/xid/0fq6i7sjk0ryq-4gi4ts

https://wolfram.com/xid/0fq6i7sjk0ryq-bisaqn


https://wolfram.com/xid/0fq6i7sjk0ryq-faewg8

Function whose inverse is a periodic function with respect to t:

https://wolfram.com/xid/0fq6i7sjk0ryq-lxi203

https://wolfram.com/xid/0fq6i7sjk0ryq-imbbi8


https://wolfram.com/xid/0fq6i7sjk0ryq-cxwn69

Fractional Calculus (3)
ComplexPlot of an algebraic function in the -domain:

https://wolfram.com/xid/0fq6i7sjk0ryq-9fi54c

Inverse Laplace transform of this algebraic function:

https://wolfram.com/xid/0fq6i7sjk0ryq-za6ksr

Laplace transform to the -domain:

https://wolfram.com/xid/0fq6i7sjk0ryq-mp79e

Inverse Laplace transform of the algebraic function:

https://wolfram.com/xid/0fq6i7sjk0ryq-0eyt13


https://wolfram.com/xid/0fq6i7sjk0ryq-i7c429

Laplace transform to the -domain:

https://wolfram.com/xid/0fq6i7sjk0ryq-yy2tpu

Inverse Laplace transform of the algebraic function involving parameters:

https://wolfram.com/xid/0fq6i7sjk0ryq-c7xb8b

Laplace transform to the -domain:

https://wolfram.com/xid/0fq6i7sjk0ryq-kna0xr

Options (3)Common values & functionality for each option
GenerateConditions (1)
By default, InverseLaplaceTransform assumes that the result is defined for non-negative t:

https://wolfram.com/xid/0fq6i7sjk0ryq-cdrh76

Use GenerateConditions to obtain the range of validity for the result:

https://wolfram.com/xid/0fq6i7sjk0ryq-f0o7x9


https://wolfram.com/xid/0fq6i7sjk0ryq-e7xhx4

Method (1)
Use the default method for numerical evaluation:

https://wolfram.com/xid/0fq6i7sjk0ryq-h669vv

Use Method to obtain the result from different methods:

https://wolfram.com/xid/0fq6i7sjk0ryq-2y1mb

Working Precision (1)
Use WorkingPrecision to obtain a result with arbitrary precision:

https://wolfram.com/xid/0fq6i7sjk0ryq-c39693


https://wolfram.com/xid/0fq6i7sjk0ryq-c045kl


https://wolfram.com/xid/0fq6i7sjk0ryq-bvx7tg

Applications (5)Sample problems that can be solved with this function
Compute the step response to the linear system with transfer function :

https://wolfram.com/xid/0fq6i7sjk0ryq-egu3y9


https://wolfram.com/xid/0fq6i7sjk0ryq-hz30xf

Solve a differential equation using Laplace transforms:

https://wolfram.com/xid/0fq6i7sjk0ryq-xr0

Solve for the Laplace transform:

https://wolfram.com/xid/0fq6i7sjk0ryq-cuv


https://wolfram.com/xid/0fq6i7sjk0ryq-x4t


https://wolfram.com/xid/0fq6i7sjk0ryq-jkk333

Find the solution directly using DSolve:

https://wolfram.com/xid/0fq6i7sjk0ryq-x8v


https://wolfram.com/xid/0fq6i7sjk0ryq-t203k

Solve a fractional-order differential equation of order 3/2:

https://wolfram.com/xid/0fq6i7sjk0ryq-5yhytr
Solve for the Laplace transform:

https://wolfram.com/xid/0fq6i7sjk0ryq-8g7evs


https://wolfram.com/xid/0fq6i7sjk0ryq-203z1c


https://wolfram.com/xid/0fq6i7sjk0ryq-oepin2

Find the solution directly using DSolve:

https://wolfram.com/xid/0fq6i7sjk0ryq-iiovhh

Solve a fractional-order differential equation of order 21/10:

https://wolfram.com/xid/0fq6i7sjk0ryq-th8xc7

Solve for the Laplace transform:

https://wolfram.com/xid/0fq6i7sjk0ryq-2udh5o


https://wolfram.com/xid/0fq6i7sjk0ryq-yf5n2h


https://wolfram.com/xid/0fq6i7sjk0ryq-g6ko7g

Find the solution directly using DSolve:

https://wolfram.com/xid/0fq6i7sjk0ryq-mzd8ky

Solve a system of fractional DEs using LaplaceTransform:

https://wolfram.com/xid/0fq6i7sjk0ryq-ykvla5


https://wolfram.com/xid/0fq6i7sjk0ryq-gmiy1x

Properties & Relations (2)Properties of the function, and connections to other functions
Use Asymptotic to compute an asymptotic approximation:

https://wolfram.com/xid/0fq6i7sjk0ryq-w0sef

InverseLaplaceTransform and LaplaceTransform are mutual inverses:

https://wolfram.com/xid/0fq6i7sjk0ryq-bf3zt1


https://wolfram.com/xid/0fq6i7sjk0ryq-4dn9t


https://wolfram.com/xid/0fq6i7sjk0ryq-it7bfn


https://wolfram.com/xid/0fq6i7sjk0ryq-byd6ra

Neat Examples (2)Surprising or curious use cases
InverseLaplaceTransform of a MeijerG function:

https://wolfram.com/xid/0fq6i7sjk0ryq-ehq2ks

Create a table of basic inverse Laplace transforms:

https://wolfram.com/xid/0fq6i7sjk0ryq-nlrdis

https://wolfram.com/xid/0fq6i7sjk0ryq-es2bp2

Wolfram Research (1999), InverseLaplaceTransform, Wolfram Language function, https://reference.wolfram.com/language/ref/InverseLaplaceTransform.html (updated 2023).
Text
Wolfram Research (1999), InverseLaplaceTransform, Wolfram Language function, https://reference.wolfram.com/language/ref/InverseLaplaceTransform.html (updated 2023).
Wolfram Research (1999), InverseLaplaceTransform, Wolfram Language function, https://reference.wolfram.com/language/ref/InverseLaplaceTransform.html (updated 2023).
CMS
Wolfram Language. 1999. "InverseLaplaceTransform." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2023. https://reference.wolfram.com/language/ref/InverseLaplaceTransform.html.
Wolfram Language. 1999. "InverseLaplaceTransform." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2023. https://reference.wolfram.com/language/ref/InverseLaplaceTransform.html.
APA
Wolfram Language. (1999). InverseLaplaceTransform. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/InverseLaplaceTransform.html
Wolfram Language. (1999). InverseLaplaceTransform. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/InverseLaplaceTransform.html
BibTeX
@misc{reference.wolfram_2025_inverselaplacetransform, author="Wolfram Research", title="{InverseLaplaceTransform}", year="2023", howpublished="\url{https://reference.wolfram.com/language/ref/InverseLaplaceTransform.html}", note=[Accessed: 24-April-2025
]}
BibLaTeX
@online{reference.wolfram_2025_inverselaplacetransform, organization={Wolfram Research}, title={InverseLaplaceTransform}, year={2023}, url={https://reference.wolfram.com/language/ref/InverseLaplaceTransform.html}, note=[Accessed: 24-April-2025
]}