WOLFRAM

gives the symbolic inverse Laplace transform of F[s] in the variable s as f[t] in the variable t.

gives the numeric inverse Laplace transform at the numerical value .

InverseLaplaceTransform[F[s1,,sn],{s1,s2,},{t1,t2,}]

gives the multidimensional inverse Laplace transform of F[s1,,sn].

Details and Options

  • Laplace transforms are typically used to transform differential and partial differential equations to algebraic equations, solve and then inverse transform back to a solution.
  • Laplace transforms are also extensively used in control theory and signal processing as a way to represent and manipulate linear systems in the form of transfer functions and transfer matrices. The Laplace transform and its inverse are then a way to transform between the time domain and frequency domain.
  • The inverse Laplace transform of a function is defined to be , where γ is an arbitrary positive constant chosen so that the contour of integration lies to the right of all singularities in .
  • The multidimensional inverse Laplace transform of a function is given by a contour integral of the form .
  • The integral is computed using numerical methods if the third argument is given a numerical value. The available method settings include "Crump", "Durbin", "Papoulis", "Piessens", "Stehfest", "Talbot" and "Weeks".
  • The asymptotic inverse Laplace transform can be computed using Asymptotic.
  • The following options can be given:
  • AccuracyGoalAutomaticdigits of absolute accuracy sought
    Assumptions$Assumptionsassumptions to make about parameters
    GenerateConditions Falsewhether to generate answers that involve conditions on parameters
    Method Automaticmethod to use
    PerformanceGoal$PerformanceGoalaspects of performance to optimize
    PrecisionGoalAutomaticdigits of precision sought
    WorkingPrecisionAutomaticthe precision used in internal computations
  • In TraditionalForm, InverseLaplaceTransform is output using -1. »

Examples

open allclose all

Basic Examples  (4)Summary of the most common use cases

Compute the inverse Laplace transform of a function:

Out[1]=1

Inverse Laplace transform of a function with parameters:

Out[1]=1

Plot the result:

Out[2]=2

Compute a numerical inverse Laplace transform:

Out[1]=1

Inverse Laplace transform of a bivariate function:

Out[1]=1

Scope  (56)Survey of the scope of standard use cases

Basic Uses  (3)

Compute the inverse Laplace transform of a function for a symbolic parameter t:

Out[1]=1

Use a numerical value for the parameter:

Out[1]=1

TraditionalForm formatting:

Rational Functions  (5)

Reciprocal of a linear function:

Out[1]=1

Reciprocal of a quadratic function:

Out[1]=1

Functions whose inverses are trigonometric functions:

Out[1]=1
Out[2]=2

Functions whose inverses are hyperbolic functions:

Out[1]=1
Out[2]=2

More examples of rational functions:

Out[1]=1
Out[2]=2
Out[3]=3

Elementary Functions  (5)

Function involving a square root:

Out[1]=1

Function involving exponential and square root functions:

Out[1]=1

Other algebraic functions:

Out[1]=1
Out[2]=2

Inverse Laplace transform leading to a Bessel function:

Out[1]=1

Inverse of an arctangent function:

Out[1]=1

Logarithmic Functions  (4)

Inverse Laplace transform of a logarithmic function:

Out[1]=1

Logarithm of a rational function:

Out[1]=1

Plot the result:

Out[2]=2

Product of a logarithm and a power function:

Out[1]=1

Function involving the square of a logarithm:

Out[1]=1

Special Functions  (12)

Function involving BesselK:

Out[1]=1

Ratio of an incomplete gamma function and a power function:

Out[1]=1

Inverse of a polygamma function:

Out[1]=1

Inverse of a function involving an error function:

Out[1]=1

Error function composed with a square root:

Out[1]=1
Out[2]=2

Inverse transforms of the LegendreP and LegendreQ functions:

Out[1]=1
Out[2]=2

Complex plots of the Legendre functions:

Out[3]=3

Product of BesselI and Exp:

Out[1]=1

ComplexPlot of the frequency-domain function:

Out[2]=2

Product of BesselJ and Gamma functions:

Out[1]=1

ComplexPlot of the frequency-domain function:

Out[2]=2

Composition of exponential integral and square root functions:

Out[1]=1

Product of two ParabolicCylinderD functions:

Out[1]=1

Inverse transforms involving elliptic integral functions:

Out[1]=1
Out[2]=2

Inverse transform of EllipticTheta:

Out[1]=1

Piecewise Functions  (5)

The inverse of the following function is a piecewise function:

Out[1]=1

Plot the inverse:

Out[2]=2

Inverse of an exponential function leading to a box function:

Out[1]=1
Out[2]=2

Inverse of an exponential function leading to a piecewise trigonometric function:

Out[1]=1
Out[2]=2

Inverse leading to a staircase function:

Out[1]=1
Out[2]=2
Out[3]=3

More involved staircase function:

Out[1]=1
Out[3]=3

Periodic Functions  (4)

The inverse of the following function is periodic with respect to t:

Out[1]=1

Activate the sum:

Out[2]=2

Plot to verify that the result is a square wave:

Out[3]=3

Function whose inverse is the absolute value of the sine function:

Out[1]=1

Activate and plot the result:

Out[2]=2

Function whose inverse is a trapezoidal wave:

Out[1]=1
Out[2]=2

A more involved piecewise example:

Out[1]=1
Out[2]=2

Generalized Functions  (3)

Inverse of an exponential function is the Dirac function:

Out[1]=1

Inverse of the product of an exponential function and a power of s is a derivative of the Dirac function:

Out[1]=1

The inverse of the hyperbolic secant is a series of Dirac functions:

Out[1]=1

Hyperbolic cotangent:

Out[2]=2

Multivariate Functions  (8)

Inverse Laplace transform of a bivariate rational function:

Out[3]=3

Verify the result:

Out[4]=4

Rational function that is separable with respect to p and q:

Out[1]=1

Rational function that is not separable with respect to p and q:

Out[1]=1

Rational function whose inverse is related to BesselJ:

Out[1]=1

Inverse Laplace transform of a bivariate function involving a radical:

Out[1]=1

Inverse Laplace transform of a multivariate function in three variables:

Out[1]=1

Rational function:

Out[1]=1

Function involving a logarithm:

Out[1]=1

Numerical Inversion  (4)

Calculate the inverse Laplace transform at a single point:

Out[1]=1

Alternatively, calculate the inverse Laplace transform symbolically:

Out[2]=2

Then evaluate it for a specific value of t:

Out[3]=3

Plot the inverse Laplace transform numerically and compare it with the exact result:

Out[2]=2
Out[3]=3

Function whose inverse is a piecewise function with respect to t:

Out[2]=2
Out[3]=3

Function whose inverse is a periodic function with respect to t:

Out[2]=2
Out[3]=3

Fractional Calculus  (3)

ComplexPlot of an algebraic function in the -domain:

Out[1]=1

Inverse Laplace transform of this algebraic function:

Out[3]=3

Laplace transform to the -domain:

Out[4]=4

Inverse Laplace transform of the algebraic function:

Out[1]=1

Plot in time domain:

Out[2]=2

Laplace transform to the -domain:

Out[3]=3

Inverse Laplace transform of the algebraic function involving parameters:

Out[1]=1

Laplace transform to the -domain:

Out[2]=2

Options  (3)Common values & functionality for each option

GenerateConditions  (1)

By default, InverseLaplaceTransform assumes that the result is defined for non-negative t:

Out[1]=1

Use GenerateConditions to obtain the range of validity for the result:

Out[2]=2
Out[3]=3

Method  (1)

Use the default method for numerical evaluation:

Out[1]=1

Use Method to obtain the result from different methods:

Out[2]=2

Working Precision  (1)

Use WorkingPrecision to obtain a result with arbitrary precision:

Out[1]=1
Out[2]=2
Out[3]=3

Applications  (5)Sample problems that can be solved with this function

Compute the step response to the linear system with transfer function :

Out[1]=1
Out[2]=2

Solve a differential equation using Laplace transforms:

Out[1]=1

Solve for the Laplace transform:

Out[2]=2

Find the inverse transform:

Out[3]=3

Apply initial conditions:

Out[4]=4

Find the solution directly using DSolve:

Out[5]=5
Out[6]=6

Solve a fractional-order differential equation of order 3/2:

Solve for the Laplace transform:

Out[2]=2

Find the inverse transform:

Out[3]=3

Plot the solution:

Out[4]=4

Find the solution directly using DSolve:

Out[5]=5

Solve a fractional-order differential equation of order 21/10:

Out[1]=1

Solve for the Laplace transform:

Out[2]=2

Find the inverse transform:

Out[3]=3

Plot the solution:

Out[4]=4

Find the solution directly using DSolve:

Out[5]=5

Solve a system of fractional DEs using LaplaceTransform:

Out[1]=1

Find the inverse transform:

Out[2]=2

Properties & Relations  (2)Properties of the function, and connections to other functions

Use Asymptotic to compute an asymptotic approximation:

Out[1]=1

InverseLaplaceTransform and LaplaceTransform are mutual inverses:

Out[1]=1
Out[2]=2
Out[3]=3
Out[4]=4

Neat Examples  (2)Surprising or curious use cases

InverseLaplaceTransform of a MeijerG function:

Out[1]=1

Create a table of basic inverse Laplace transforms:

Wolfram Research (1999), InverseLaplaceTransform, Wolfram Language function, https://reference.wolfram.com/language/ref/InverseLaplaceTransform.html (updated 2023).
Wolfram Research (1999), InverseLaplaceTransform, Wolfram Language function, https://reference.wolfram.com/language/ref/InverseLaplaceTransform.html (updated 2023).

Text

Wolfram Research (1999), InverseLaplaceTransform, Wolfram Language function, https://reference.wolfram.com/language/ref/InverseLaplaceTransform.html (updated 2023).

Wolfram Research (1999), InverseLaplaceTransform, Wolfram Language function, https://reference.wolfram.com/language/ref/InverseLaplaceTransform.html (updated 2023).

CMS

Wolfram Language. 1999. "InverseLaplaceTransform." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2023. https://reference.wolfram.com/language/ref/InverseLaplaceTransform.html.

Wolfram Language. 1999. "InverseLaplaceTransform." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2023. https://reference.wolfram.com/language/ref/InverseLaplaceTransform.html.

APA

Wolfram Language. (1999). InverseLaplaceTransform. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/InverseLaplaceTransform.html

Wolfram Language. (1999). InverseLaplaceTransform. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/InverseLaplaceTransform.html

BibTeX

@misc{reference.wolfram_2025_inverselaplacetransform, author="Wolfram Research", title="{InverseLaplaceTransform}", year="2023", howpublished="\url{https://reference.wolfram.com/language/ref/InverseLaplaceTransform.html}", note=[Accessed: 24-April-2025 ]}

@misc{reference.wolfram_2025_inverselaplacetransform, author="Wolfram Research", title="{InverseLaplaceTransform}", year="2023", howpublished="\url{https://reference.wolfram.com/language/ref/InverseLaplaceTransform.html}", note=[Accessed: 24-April-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_inverselaplacetransform, organization={Wolfram Research}, title={InverseLaplaceTransform}, year={2023}, url={https://reference.wolfram.com/language/ref/InverseLaplaceTransform.html}, note=[Accessed: 24-April-2025 ]}

@online{reference.wolfram_2025_inverselaplacetransform, organization={Wolfram Research}, title={InverseLaplaceTransform}, year={2023}, url={https://reference.wolfram.com/language/ref/InverseLaplaceTransform.html}, note=[Accessed: 24-April-2025 ]}