# ParabolicCylinderD

ParabolicCylinderD[ν,z]

gives the parabolic cylinder function .

# Examples

open allclose all

## Basic Examples(5)

Evaluate numerically:

Plot over a subset of the reals:

Plot over a subset of the complexes:

Series expansion at the origin:

Series expansion at Infinity:

## Scope(34)

### Numerical Evaluation(5)

Evaluate numerically:

Evaluate to high precision:

The precision of the output tracks the precision of the input:

Complex number input:

Evaluate efficiently at high precision:

ParabolicCylinderD can be used with Interval and CenteredInterval objects:

### Specific Values(5)

ParabolicCylinderD for symbolic parameters:

Value at zero:

Limiting value at infinity:

Find the first positive maximum of ParabolicCylinderD:

Evaluate for half-integer parameters:

### Visualization(4)

Plot the ParabolicCylinderD function for integer () and half-integer () orders:

Plot the real part of :

Plot the imaginary part of :

Plot as real parts of two parameters vary:

Types 2 and 3 of ParabolicCylinderD function have different branch cut structures:

### Function Properties(10)

ParabolicCylinderD is defined for all real and complex values:

is an analytic function of :

is neither non-decreasing nor non-increasing for :

is not injective for :

ParabolicCylinderD is not surjective:

is neither non-negative nor non-positive for :

ParabolicCylinderD has no singularities or discontinuities:

is neither convex nor concave for :

### Differentiation(3)

First derivative with respect to z:

Higher derivatives with respect to z

Plot the higher derivatives with respect to z when ν=2:

Formula for the derivative with respect to z:

### Series Expansions(5)

Find the Taylor expansion using Series:

Plots of the first three approximations around :

General term in the series expansion using SeriesCoefficient:

Find the series expansion at Infinity:

Find series expansion for an arbitrary symbolic direction :

Taylor expansion at a generic point:

### Function Identities and Simplifications(2)

Function identity:

Recurrence identities:

## Generalizations & Extensions(2)

Series expansion for symbolic first argument:

Series expansion at infinity:

## Applications(2)

Find the solution of the Schrödinger equation for a quadratic oscillator for arbitrary energies:

ParabolicCylinderD solves the Weber equation:

## Properties & Relations(5)

Use FunctionExpand to expand ParabolicCylinderD into other functions:

Integrate expressions involving ParabolicCylinderD:

ParabolicCylinderD can be represented as a DifferentialRoot:

ParabolicCylinderD can be represented as a DifferenceRoot:

The exponential generating function for ParabolicCylinderD:

Wolfram Research (2007), ParabolicCylinderD, Wolfram Language function, https://reference.wolfram.com/language/ref/ParabolicCylinderD.html.

#### Text

Wolfram Research (2007), ParabolicCylinderD, Wolfram Language function, https://reference.wolfram.com/language/ref/ParabolicCylinderD.html.

#### CMS

Wolfram Language. 2007. "ParabolicCylinderD." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/ParabolicCylinderD.html.

#### APA

Wolfram Language. (2007). ParabolicCylinderD. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/ParabolicCylinderD.html

#### BibTeX

@misc{reference.wolfram_2024_paraboliccylinderd, author="Wolfram Research", title="{ParabolicCylinderD}", year="2007", howpublished="\url{https://reference.wolfram.com/language/ref/ParabolicCylinderD.html}", note=[Accessed: 18-July-2024 ]}

#### BibLaTeX

@online{reference.wolfram_2024_paraboliccylinderd, organization={Wolfram Research}, title={ParabolicCylinderD}, year={2007}, url={https://reference.wolfram.com/language/ref/ParabolicCylinderD.html}, note=[Accessed: 18-July-2024 ]}